Note on Categories of Indecomposable Modules
Manabu Harada (1972)
Publications du Département de mathématiques (Lyon)
Similarity:
Manabu Harada (1972)
Publications du Département de mathématiques (Lyon)
Similarity:
Manabu Harada (1974)
Publications du Département de mathématiques (Lyon)
Similarity:
Clezio A. Braga, Flávio U. Coelho (2009)
Colloquium Mathematicae
Similarity:
We study the problem of when a direct limit of tilting modules is still a tilting module.
Oleksandr Khomenko, Volodymyr Mazorchuk (2002)
Colloquium Mathematicae
Similarity:
We prove that generalized Verma modules induced from generic Gelfand-Zetlin modules, and generalized Verma modules associated with Enright-complete modules, are rigid. Their Loewy lengths and quotients of the unique Loewy filtrations are calculated for the regular block of the corresponding category 𝒪(𝔭,Λ).
Tobias Scheuer (1990)
Banach Center Publications
Similarity:
Andrzej Skowroński (1984)
Colloquium Mathematicae
Similarity:
Pasha Zusmanovich (2019)
Communications in Mathematics
Similarity:
Roman Sikorski (1971)
Colloquium Mathematicae
Similarity:
Andrzej Skowroński, Grzegorz Zwara (1998)
Annales scientifiques de l'École Normale Supérieure
Similarity:
Clezio Braga, Flávio Coelho (2008)
Open Mathematics
Similarity:
We discuss the existence of tilting modules which are direct limits of finitely generated tilting modules over tilted algebras.
Karin Erdmann, José Antonio de la Peña, Corina Sáenz (2002)
Colloquium Mathematicae
Similarity:
Let A be a finite-dimensional algebra which is quasi-hereditary with respect to the poset (Λ, ≤), with standard modules Δ(λ) for λ ∈ Λ. Let ℱ(Δ) be the category of A-modules which have filtrations where the quotients are standard modules. We determine some inductive results on the relative Auslander-Reiten quiver of ℱ(Δ).
Jan Kubarski (1984)
Annales Polonici Mathematici
Similarity:
Otto Kerner, Frank Lukas (1996)
Mathematische Zeitschrift
Similarity:
S. Ebrahimi Atani, S. Dolati Pishhesari, M. Khoramdel (2013)
Discussiones Mathematicae - General Algebra and Applications
Similarity:
We provide several characterizations and investigate properties of Prüfer modules. In fact, we study the connections of such modules with their endomorphism rings. We also prove that for any Prüfer module M, the forcing linearity number of M, fln(M), belongs to {0,1}.
Claus Ringel (1998)
Colloquium Mathematicae
Similarity: