Displaying similar documents to “A partition property of cardinal numbers”

Reflecting character and pseudocharacter

Lucia R. Junqueira, Alberto M. E. Levi (2015)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We say that a cardinal function φ reflects an infinite cardinal κ , if given a topological space X with φ ( X ) κ , there exists Y [ X ] κ with φ ( Y ) κ . We investigate some problems, discussed by Hodel and Vaughan in Reflection theorems for cardinal functions, Topology Appl. 100 (2000), 47–66, and Juhász in Cardinal functions and reflection, Topology Atlas Preprint no. 445, 2000, related to the reflection for the cardinal functions character and pseudocharacter. Among other results, we present some new equivalences...

On simple partitions of [ κ ] κ

David Asperó (2003)

Fundamenta Mathematicae

Similarity:

For every uncountable regular cardinal κ, every κ-Borel partition of the space of all members of [ κ ] κ whose enumerating function does not have fixed points has a homogeneous club.

Partition ideals below ω

P. Dodos, J. Lopez-Abad, S. Todorcevic (2012)

Fundamenta Mathematicae

Similarity:

Motivated by an application to the unconditional basic sequence problem appearing in our previous paper, we introduce analogues of the Laver ideal on ℵ₂ living on index sets of the form [ k ] ω and use this to refine the well-known high-dimensional polarized partition relation for ω of Shelah.

Uncountable cardinals have the same monadic ∀₁¹ positive theory over large sets

Athanassios Tzouvaras (2004)

Fundamenta Mathematicae

Similarity:

We show that uncountable cardinals are indistinguishable by sentences of the monadic second-order language of order of the form (∀X)ϕ(X) and (∃X)ϕ(X), for ϕ positive in X and containing no set-quantifiers, when the set variables range over large (= cofinal) subsets of the cardinals. This strengthens the result of Doner-Mostowski-Tarski [3] that (κ,∈), (λ,∈) are elementarily equivalent when κ, λ are uncountable. It follows that we can consistently postulate that the structures ( 2 κ , [ 2 κ ] > κ , < ) , ( 2 λ , [ 2 λ ] > λ , < ) are...

Initially κ -compact spaces for large κ

Stavros Christodoulou (1999)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

This work presents some cardinal inequalities in which appears the closed pseudo-character, ψ c , of a space. Using one of them — ψ c ( X ) 2 d ( X ) for T 2 spaces — we improve, from T 3 to T 2 spaces, the well-known result that initially κ -compact T 3 spaces are λ -bounded for all cardinals λ such that 2 λ κ . And then, using an idea of A. Dow, we prove that initially κ -compact T 2 spaces are in fact compact for κ = 2 F ( X ) , 2 s ( X ) , 2 t ( X ) , 2 χ ( X ) , 2 ψ c ( X ) or κ = max { τ + , τ < τ } , where τ > t ( p , X ) for all p X .

On families of Lindelöf and related subspaces of 2 ω

Lúcia Junqueira, Piotr Koszmider (2001)

Fundamenta Mathematicae

Similarity:

We consider the families of all subspaces of size ω₁ of 2 ω (or of a compact zero-dimensional space X of weight ω₁ in general) which are normal, have the Lindelöf property or are closed under limits of convergent ω₁-sequences. Various relations among these families modulo the club filter in [ X ] ω are shown to be consistently possible. One of the main tools is dealing with a subspace of the form X ∩ M for an elementary submodel M of size ω₁. Various results with this flavor are obtained. Another...

How many normal measures can ω + 1 carry?

Arthur W. Apter (2006)

Fundamenta Mathematicae

Similarity:

We show that assuming the consistency of a supercompact cardinal with a measurable cardinal above it, it is possible for ω + 1 to be measurable and to carry exactly τ normal measures, where τ ω + 2 is any regular cardinal. This contrasts with the fact that assuming AD + DC, ω + 1 is measurable and carries exactly three normal measures. Our proof uses the methods of [6], along with a folklore technique and a new method due to James Cummings.

Embedding orders into the cardinals with D C κ

Asaf Karagila (2014)

Fundamenta Mathematicae

Similarity:

Jech proved that every partially ordered set can be embedded into the cardinals of some model of ZF. We extend this result to show that every partially ordered set can be embedded into the cardinals of some model of Z F + D C < κ for any regular κ. We use this theorem to show that for all κ, the assumption of D C κ does not entail that there are no decreasing chains of cardinals. We also show how to extend the result to and embed into the cardinals a proper class which is definable over the ground model....

On ordinals accessible by infinitary languages

Saharon Shelah, Pauli Väisänen, Jouko Väänänen (2005)

Fundamenta Mathematicae

Similarity:

Let λ be an infinite cardinal number. The ordinal number δ(λ) is the least ordinal γ such that if ϕ is any sentence of L λ ω , with a unary predicate D and a binary predicate ≺, and ϕ has a model ℳ with D , a well-ordering of type ≥ γ, then ϕ has a model ℳ ’ where D ' , ' is non-well-ordered. One of the interesting properties of this number is that the Hanf number of L λ ω is exactly δ ( λ ) . It was proved in [BK71] that if ℵ₀ < λ < κ a r e r e g u l a r c a r d i n a l n u m b e r s , t h e n t h e r e i s a f o r c i n g e x t e n s i o n , p r e s e r v i n g c o f i n a l i t i e s , s u c h t h a t i n t h e e x t e n s i o n 2λ = κ a n d δ ( λ ) < λ . W e i m p r o v e t h i s r e s u l t b y p r o v i n g t h e f o l l o w i n g : S u p p o s e < λ < θ κ a r e c a r d i n a l n u m b e r s s u c h t h a t λ < λ = λ ; ∙ cf(θ) ≥ λ⁺ and μ λ < θ whenever μ < θ; ∙ κ λ = κ . Then there...

On the bounding, splitting, and distributivity numbers

Alan S. Dow, Saharon Shelah (2023)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

The cardinal invariants 𝔥 , 𝔟 , 𝔰 of 𝒫 ( ω ) are known to satisfy that ω 1 𝔥 min { 𝔟 , 𝔰 } . We prove that all inequalities can be strict. We also introduce a new upper bound for 𝔥 and show that it can be less than 𝔰 . The key method is to utilize finite support matrix iterations of ccc posets following paper Ultrafilters with small generating sets by A. Blass and S. Shelah (1989).

The tree property at the double successor of a measurable cardinal κ with 2 κ large

Sy-David Friedman, Ajdin Halilović (2013)

Fundamenta Mathematicae

Similarity:

Assuming the existence of a λ⁺-hypermeasurable cardinal κ, where λ is the first weakly compact cardinal above κ, we prove that, in some forcing extension, κ is still measurable, κ⁺⁺ has the tree property and 2 κ = κ . If the assumption is strengthened to the existence of a θ -hypermeasurable cardinal (for an arbitrary cardinal θ > λ of cofinality greater than κ) then the proof can be generalized to get 2 κ = θ .

Characterizing the powerset by a complete (Scott) sentence

Ioannis Souldatos (2013)

Fundamenta Mathematicae

Similarity:

This paper is part II of a study on cardinals that are characterizable by a Scott sentence, continuing previous work of the author. A cardinal κ is characterized by a Scott sentence ϕ if ϕ has a model of size κ, but no model of size κ⁺. The main question in this paper is the following: Are the characterizable cardinals closed under the powerset operation? We prove that if β is characterized by a Scott sentence, then 2 β + β is (homogeneously) characterized by a Scott sentence, for all 0 <...

Supercompactness and failures of GCH

Sy-David Friedman, Radek Honzik (2012)

Fundamenta Mathematicae

Similarity:

Let κ < λ be regular cardinals. We say that an embedding j: V → M with critical point κ is λ-tall if λ < j(κ) and M is closed under κ-sequences in V. Silver showed that GCH can fail at a measurable cardinal κ, starting with κ being κ⁺⁺-supercompact. Later, Woodin improved this result, starting from the optimal hypothesis of a κ⁺⁺-tall measurable cardinal κ. Now more generally, suppose that κ ≤ λ are regular and one wishes the GCH to fail at λ with κ being λ-supercompact. Silver’s...

Iterating along a Prikry sequence

Spencer Unger (2016)

Fundamenta Mathematicae

Similarity:

We introduce a new method which combines Prikry forcing with an iteration between the Prikry points. Using our method we prove from large cardinals that it is consistent that the tree property holds at ℵₙ for n ≥ 2, ω is strong limit and 2 ω = ω + 2 .

On isomorphism classes of C ( 2 [ 0 , α ] ) spaces

Elói Medina Galego (2009)

Fundamenta Mathematicae

Similarity:

We provide a complete isomorphic classification of the Banach spaces of continuous functions on the compact spaces 2 [ 0 , α ] , the topological sums of Cantor cubes 2 , with smaller than the first sequential cardinal, and intervals of ordinal numbers [0,α]. In particular, we prove that it is relatively consistent with ZFC that the only isomorphism classes of C ( 2 [ 0 , α ] ) spaces with ≥ ℵ₀ and α ≥ ω₁ are the trivial ones. This result leads to some elementary questions on large cardinals.