Displaying similar documents to “Fiber product preserving bundle functors as modified vertical Weil functors”

The natural operators lifting 1-forms to some vector bundle functors

J. Kurek, W. M. Mikulski (2002)

Colloquium Mathematicae

Similarity:

Let F:ℳ f→ ℬ be a vector bundle functor. First we classify all natural operators T | f T ( 0 , 0 ) ( F | f ) * transforming vector fields to functions on the dual bundle functor ( F | f ) * . Next, we study the natural operators T * | f T * ( F | f ) * lifting 1-forms to ( F | f ) * . As an application we classify the natural operators T * | f T * ( F | f ) * for some well known vector bundle functors F.

Linear liftings of affinors to Weil bundles

Jacek Dębecki (2003)

Colloquium Mathematicae

Similarity:

We give a classification of all linear natural operators transforming affinors on each n-dimensional manifold M into affinors on T A M , where T A is the product preserving bundle functor given by a Weil algebra A, under the condition that n ≥ 2.

The natural operators lifting horizontal 1-forms to some vector bundle functors on fibered manifolds

J. Kurek, W. M. Mikulski (2003)

Colloquium Mathematicae

Similarity:

Let F:ℱ ℳ → ℬ be a vector bundle functor. First we classify all natural operators T p r o j | m , n T ( 0 , 0 ) ( F | m , n ) * transforming projectable vector fields on Y to functions on the dual bundle (FY)* for any m , n -object Y. Next, under some assumption on F we study natural operators T * h o r | m , n T * ( F | m , n ) * lifting horizontal 1-forms on Y to 1-forms on (FY)* for any Y as above. As an application we classify natural operators T * h o r | m , n T * ( F | m , n ) * for some vector bundle functors F on fibered manifolds.

Non-existence of some natural operators on connections

W. M. Mikulski (2003)

Annales Polonici Mathematici

Similarity:

Let n,r,k be natural numbers such that n ≥ k+1. Non-existence of natural operators C r Q ( r e g T k r K k r ) and C r Q ( r e g T k r * K k r * ) over n-manifolds is proved. Some generalizations are obtained.

The natural linear operators T * T T ( r )

J. Kurek, W. M. Mikulski (2003)

Colloquium Mathematicae

Similarity:

For natural numbers n ≥ 3 and r a complete description of all natural bilinear operators T * × f T ( 0 , 0 ) T ( 0 , 0 ) T ( r ) is presented. Next for natural numbers r and n ≥ 3 a full classification of all natural linear operators T * | f T T ( r ) is obtained.

On lifting of connections to Weil bundles

Jan Kurek, Włodzimierz M. Mikulski (2012)

Annales Polonici Mathematici

Similarity:

We prove that the problem of finding all f m -natural operators B : Q Q T A lifting classical linear connections ∇ on m-manifolds M to classical linear connections B M ( ) on the Weil bundle T A M corresponding to a p-dimensional (over ℝ) Weil algebra A is equivalent to the one of finding all f m -natural operators C : Q ( T ¹ p - 1 , T * T * T ) transforming classical linear connections ∇ on m-manifolds M into base-preserving fibred maps C M ( ) : T ¹ p - 1 M = M p - 1 T M T * M T * M T M .

Connected sequences of stable derived functors and their applications

Daniel Simson, Andrzej Tyc

Similarity:

CONTENTS1. Introduction........................................................................................................................................................................................................ 52. Category of complexes.................................................................................................................................................................................... 73. Left stable derived functors of covariant functors..........................................................................................................................................

Constructions on second order connections

J. Kurek, W. M. Mikulski (2007)

Annales Polonici Mathematici

Similarity:

We classify all m , n -natural operators : J ² J ² V A transforming second order connections Γ: Y → J²Y on a fibred manifold Y → M into second order connections ( Γ ) : V A Y J ² V A Y on the vertical Weil bundle V A Y M corresponding to a Weil algebra A.

Compatibility of the theta correspondence with the Whittaker functors

Vincent Lafforgue, Sergey Lysenko (2011)

Bulletin de la Société Mathématique de France

Similarity:

We prove that the global geometric theta-lifting functor for the dual pair ( H , G ) is compatible with the Whittaker functors, where ( H , G ) is one of the pairs ( S 𝕆 2 n , 𝕊 p 2 n ) , ( 𝕊 p 2 n , S 𝕆 2 n + 2 ) or ( 𝔾 L n , 𝔾 L n + 1 ) . That is, the composition of the theta-lifting functor from H to G with the Whittaker functor for G is isomorphic to the Whittaker functor for H .

Lifting to the r-frame bundle by means of connections

J. Kurek, W. M. Mikulski (2010)

Annales Polonici Mathematici

Similarity:

Let m and r be natural numbers and let P r : f m be the rth order frame bundle functor. Let F : f m and G : f k be natural bundles, where k = d i m ( P r m ) . We describe all f m -natural operators A transforming sections σ of F M M and classical linear connections ∇ on M into sections A(σ,∇) of G ( P r M ) P r M . We apply this general classification result to many important natural bundles F and G and obtain many particular classifications.

Liftings of 1-forms to ( J r T * ) *

Włodzimierz M. Mikulski (2002)

Colloquium Mathematicae

Similarity:

Let J r T * M be the r-jet prolongation of the cotangent bundle of an n-dimensional manifold M and let ( J r T * M ) * be the dual vector bundle. For natural numbers r and n, a complete classification of all linear natural operators lifting 1-forms from M to 1-forms on ( J r T * M ) * is given.

On the γ -equivalence of semiholonomic jets

Miroslav Doupovec, Ivan Kolář (2019)

Archivum Mathematicum

Similarity:

It is well known that the concept of holonomic r -jet can be geometrically characterized in terms of the contact of individual curves. However, this is not true for the semiholonomic r -jets, [5], [8]. In the present paper, we discuss systematically the semiholonomic case.

On prolongations of projectable connections

Jan Kurek, Włodzimierz M. Mikulski (2011)

Annales Polonici Mathematici

Similarity:

We extend the concept of r-order connections on fibred manifolds to the one of (r,s,q)-order projectable connections on fibred-fibred manifolds, where r,s,q are arbitrary non-negative integers with s ≥ r ≤ q. Similarly to the fibred manifold case, given a bundle functor F of order r on (m₁,m₂,n₁,n₂)-dimensional fibred-fibred manifolds Y → M, we construct a general connection ℱ(Γ,Λ):FY → J¹FY on FY → M from a projectable general (i.e. (1,1,1)-order) connection Γ : Y J 1 , 1 , 1 Y on Y → M by means of an...

On almost complex structures from classical linear connections

Jan Kurek, Włodzimierz M. Mikulski (2017)

Annales Universitatis Mariae Curie-Sklodowska, sectio A – Mathematica

Similarity:

Let f m be the category of m -dimensional manifolds and local diffeomorphisms and  let T be the tangent functor on f m . Let 𝒱 be the category of real vector spaces and linear maps and let 𝒱 m be the category of m -dimensional real vector spaces and linear isomorphisms. We characterize all regular covariant functors F : 𝒱 m 𝒱 admitting f m -natural operators J ˜ transforming classical linear connections on m -dimensional manifolds M into almost complex structures J ˜ ( ) on F ( T ) M = x M F ( T x M ) .

A F -algebras and topology of mapping tori

Igor Nikolaev (2015)

Czechoslovak Mathematical Journal

Similarity:

The paper studies applications of C * -algebras in geometric topology. Namely, a covariant functor from the category of mapping tori to a category of A F -algebras is constructed; the functor takes continuous maps between such manifolds to stable homomorphisms between the corresponding A F -algebras. We use this functor to develop an obstruction theory for the torus bundles of dimension 2 , 3 and 4 . In conclusion, we consider two numerical examples illustrating our main results.

Generic representations of orthogonal groups: projective functors in the category q u a d

Christine Vespa (2008)

Fundamenta Mathematicae

Similarity:

We continue the study of the category of functors q u a d , associated to ₂-vector spaces equipped with a nondegenerate quadratic form, initiated in J. Pure Appl. Algebra 212 (2008) and Algebr. Geom. Topology 7 (2007). We define a filtration of the standard projective objects in q u a d ; this refines to give a decomposition into indecomposable factors of the first two standard projective objects in q u a d : P H and P H . As an application of these two decompositions, we give a complete description of the polynomial...

Bipartite coalgebras and a reduction functor for coradical square complete coalgebras

Justyna Kosakowska, Daniel Simson (2008)

Colloquium Mathematicae

Similarity:

Let C be a coalgebra over an arbitrary field K. We show that the study of the category C-Comod of left C-comodules reduces to the study of the category of (co)representations of a certain bicomodule, in case C is a bipartite coalgebra or a coradical square complete coalgebra, that is, C = C₁, the second term of the coradical filtration of C. If C = C₁, we associate with C a K-linear functor C : C - C o m o d H C - C o m o d that restricts to a representation equivalence C : C - c o m o d H C - c o m o d s p , where H C is a coradical square complete hereditary...

Two results of n -exangulated categories

Jian He, Jing He, Panyue Zhou (2024)

Czechoslovak Mathematical Journal

Similarity:

M. Herschend, Y. Liu, H. Nakaoka introduced n -exangulated categories, which are a simultaneous generalization of n -exact categories and ( n + 2 ) -angulated categories. This paper consists of two results on n -exangulated categories: (1) we give an equivalent characterization of axiom (EA2); (2) we provide a new way to construct a closed subfunctor of an n -exangulated category.

Geometric stability of the cotangent bundle and the universal cover of a projective manifold

Frédéric Campana, Thomas Peternell (2011)

Bulletin de la Société Mathématique de France

Similarity:

We first prove a strengthening of Miyaoka’s generic semi-positivity theorem: the quotients of the tensor powers of the cotangent bundle of a non-uniruled complex projective manifold X have a pseudo-effective (instead of generically nef) determinant. A first consequence is that X is of general type if its cotangent bundle contains a subsheaf with ‘big’ determinant. Among other applications, we deduce that if the universal cover of X is not covered by compact positive-dimensional analytic...