Displaying similar documents to “Bounds on the global offensive k-alliance number in graphs”

On 𝓕-independence in graphs

Frank Göring, Jochen Harant, Dieter Rautenbach, Ingo Schiermeyer (2009)

Discussiones Mathematicae Graph Theory

Similarity:

Let be a set of graphs and for a graph G let α ( G ) and α * ( G ) denote the maximum order of an induced subgraph of G which does not contain a graph in as a subgraph and which does not contain a graph in as an induced subgraph, respectively. Lower bounds on α ( G ) and α * ( G ) are presented.

Fractional global domination in graphs

Subramanian Arumugam, Kalimuthu Karuppasamy, Ismail Sahul Hamid (2010)

Discussiones Mathematicae Graph Theory

Similarity:

Let G = (V,E) be a graph. A function g:V → [0,1] is called a global dominating function (GDF) of G, if for every v ∈ V, g ( N [ v ] ) = u N [ v ] g ( u ) 1 and g ( N ( v ) ¯ ) = u N ( v ) g ( u ) 1 . A GDF g of a graph G is called minimal (MGDF) if for all functions f:V → [0,1] such that f ≤ g and f(v) ≠ g(v) for at least one v ∈ V, f is not a GDF. The fractional global domination number γ f g ( G ) is defined as follows: γ f g ( G ) = min|g|:g is an MGDF of G where | g | = v V g ( v ) . In this paper we initiate a study of this parameter.

Upper oriented chromatic number of undirected graphs and oriented colorings of product graphs

Éric Sopena (2012)

Discussiones Mathematicae Graph Theory

Similarity:

The oriented chromatic number of an oriented graph G is the minimum order of an oriented graph H such that G admits a homomorphism to H . The oriented chromatic number of an undirected graph G is then the greatest oriented chromatic number of its orientations. In this paper, we introduce the new notion of the upper oriented chromatic number of an undirected graph G, defined as the minimum order of an oriented graph U such that every orientation G of G admits a homomorphism to U . We give...

Upper bounds for the domination numbers of toroidal queens graphs

Christina M. Mynhardt (2003)

Discussiones Mathematicae Graph Theory

Similarity:

We determine upper bounds for γ ( Q n t ) and i ( Q t ) , the domination and independent domination numbers, respectively, of the graph Q t obtained from the moves of queens on the n×n chessboard drawn on the torus.

On subgraphs without large components

Glenn G. Chappell, John Gimbel (2017)

Mathematica Bohemica

Similarity:

We consider, for a positive integer k , induced subgraphs in which each component has order at most k . Such a subgraph is said to be k -divided. We show that finding large induced subgraphs with this property is NP-complete. We also consider a related graph-coloring problem: how many colors are required in a vertex coloring in which each color class induces a k -divided subgraph. We show that the problem of determining whether some given number of colors suffice is NP-complete, even for...

On distinguishing and distinguishing chromatic numbers of hypercubes

Werner Klöckl (2008)

Discussiones Mathematicae Graph Theory

Similarity:

The distinguishing number D(G) of a graph G is the least integer d such that G has a labeling with d colors that is not preserved by any nontrivial automorphism. The restriction to proper labelings leads to the definition of the distinguishing chromatic number χ D ( G ) of G. Extending these concepts to infinite graphs we prove that D ( Q ) = 2 and χ D ( Q ) = 3 , where Q denotes the hypercube of countable dimension. We also show that χ D ( Q ) = 4 , thereby completing the investigation of finite hypercubes with respect to χ D . Our...

On the total k-domination number of graphs

Adel P. Kazemi (2012)

Discussiones Mathematicae Graph Theory

Similarity:

Let k be a positive integer and let G = (V,E) be a simple graph. The k-tuple domination number γ × k ( G ) of G is the minimum cardinality of a k-tuple dominating set S, a set that for every vertex v ∈ V, | N G [ v ] S | k . Also the total k-domination number γ × k , t ( G ) of G is the minimum cardinality of a total k -dominating set S, a set that for every vertex v ∈ V, | N G ( v ) S | k . The k-transversal number τₖ(H) of a hypergraph H is the minimum size of a subset S ⊆ V(H) such that |S ∩e | ≥ k for every edge e ∈ E(H). We know that for...

Edit distance measure for graphs

Tomasz Dzido, Krzysztof Krzywdziński (2015)

Czechoslovak Mathematical Journal

Similarity:

In this paper, we investigate a measure of similarity of graphs similar to the Ramsey number. We present values and bounds for g ( n , l ) , the biggest number k guaranteeing that there exist l graphs on n vertices, each two having edit distance at least k . By edit distance of two graphs G , F we mean the number of edges needed to be added to or deleted from graph G to obtain graph F . This new extremal number g ( n , l ) is closely linked to the edit distance of graphs. Using probabilistic methods we show...

On characterization of uniquely 3-list colorable complete multipartite graphs

Yancai Zhao, Erfang Shan (2010)

Discussiones Mathematicae Graph Theory

Similarity:

For each vertex v of a graph G, if there exists a list of k colors, L(v), such that there is a unique proper coloring for G from this collection of lists, then G is called a uniquely k-list colorable graph. Ghebleh and Mahmoodian characterized uniquely 3-list colorable complete multipartite graphs except for nine graphs: K 2 , 2 , r r ∈ 4,5,6,7,8, K 2 , 3 , 4 , K 1 * 4 , 4 , K 1 * 4 , 5 , K 1 * 5 , 4 . Also, they conjectured that the nine graphs are not U3LC graphs. After that, except for K 2 , 2 , r r ∈ 4,5,6,7,8, the others have been proved not...

Remarks on D -integral complete multipartite graphs

Pavel Híc, Milan Pokorný (2016)

Czechoslovak Mathematical Journal

Similarity:

A graph is called distance integral (or D -integral) if all eigenvalues of its distance matrix are integers. In their study of D -integral complete multipartite graphs, Yang and Wang (2015) posed two questions on the existence of such graphs. We resolve these questions and present some further results on D -integral complete multipartite graphs. We give the first known distance integral complete multipartite graphs K p 1 , p 2 , p 3 with p 1 < p 2 < p 3 , and K p 1 , p 2 , p 3 , p 4 with p 1 < p 2 < p 3 < p 4 , as well as the infinite classes of distance integral...

A spectral bound for graph irregularity

Felix Goldberg (2015)

Czechoslovak Mathematical Journal

Similarity:

The imbalance of an edge e = { u , v } in a graph is defined as i ( e ) = | d ( u ) - d ( v ) | , where d ( · ) is the vertex degree. The irregularity I ( G ) of G is then defined as the sum of imbalances over all edges of G . This concept was introduced by Albertson who proved that I ( G ) 4 n 3 / 27 (where n = | V ( G ) | ) and obtained stronger bounds for bipartite and triangle-free graphs. Since then a number of additional bounds were given by various authors. In this paper we prove a new upper bound, which improves a bound found by Zhou and Luo in 2008. Our bound involves...

Domination and independence subdivision numbers of graphs

Teresa W. Haynes, Sandra M. Hedetniemi, Stephen T. Hedetniemi (2000)

Discussiones Mathematicae Graph Theory

Similarity:

The domination subdivision number s d γ ( G ) of a graph is the minimum number of edges that must be subdivided (where an edge can be subdivided at most once) in order to increase the domination number. Arumugam showed that this number is at most three for any tree, and conjectured that the upper bound of three holds for any graph. Although we do not prove this interesting conjecture, we give an upper bound for the domination subdivision number for any graph G in terms of the minimum degrees of...

Generalized list colourings of graphs

Mieczysław Borowiecki, Ewa Drgas-Burchardt, Peter Mihók (1995)

Discussiones Mathematicae Graph Theory

Similarity:

We prove: (1) that c h P ( G ) - χ P ( G ) can be arbitrarily large, where c h P ( G ) and χ P ( G ) are P-choice and P-chromatic numbers, respectively, (2) the (P,L)-colouring version of Brooks’ and Gallai’s theorems.

Roman bondage in graphs

Nader Jafari Rad, Lutz Volkmann (2011)

Discussiones Mathematicae Graph Theory

Similarity:

A Roman dominating function on a graph G is a function f:V(G) → 0,1,2 satisfying the condition that every vertex u for which f(u) = 0 is adjacent to at least one vertex v for which f(v) = 2. The weight of a Roman dominating function is the value f ( V ( G ) ) = u V ( G ) f ( u ) . The Roman domination number, γ R ( G ) , of G is the minimum weight of a Roman dominating function on G. In this paper, we define the Roman bondage b R ( G ) of a graph G with maximum degree at least two to be the minimum cardinality of all sets E’ ⊆ E(G)...

Neighbor sum distinguishing list total coloring of IC-planar graphs without 5-cycles

Donghan Zhang (2022)

Czechoslovak Mathematical Journal

Similarity:

Let G = ( V ( G ) , E ( G ) ) be a simple graph and E G ( v ) denote the set of edges incident with a vertex v . A neighbor sum distinguishing (NSD) total coloring φ of G is a proper total coloring of G such that z E G ( u ) { u } φ ( z ) z E G ( v ) { v } φ ( z ) for each edge u v E ( G ) . Pilśniak and Woźniak asserted in 2015 that each graph with maximum degree Δ admits an NSD total ( Δ + 3 ) -coloring. We prove that the list version of this conjecture holds for any IC-planar graph with Δ 11 but without 5 -cycles by applying the Combinatorial Nullstellensatz.

On locating-domination in graphs

Mustapha Chellali, Malika Mimouni, Peter J. Slater (2010)

Discussiones Mathematicae Graph Theory

Similarity:

A set D of vertices in a graph G = (V,E) is a locating-dominating set (LDS) if for every two vertices u,v of V-D the sets N(u)∩ D and N(v)∩ D are non-empty and different. The locating-domination number γ L ( G ) is the minimum cardinality of a LDS of G, and the upper locating-domination number, Γ L ( G ) is the maximum cardinality of a minimal LDS of G. We present different bounds on Γ L ( G ) and γ L ( G ) .

Maximal k-independent sets in graphs

Mostafa Blidia, Mustapha Chellali, Odile Favaron, Nacéra Meddah (2008)

Discussiones Mathematicae Graph Theory

Similarity:

A subset of vertices of a graph G is k-independent if it induces in G a subgraph of maximum degree less than k. The minimum and maximum cardinalities of a maximal k-independent set are respectively denoted iₖ(G) and βₖ(G). We give some relations between βₖ(G) and β j ( G ) and between iₖ(G) and i j ( G ) for j ≠ k. We study two families of extremal graphs for the inequality i₂(G) ≤ i(G) + β(G). Finally we give an upper bound on i₂(G) and a lower bound when G is a cactus.

Global regularity for the 3D MHD system with damping

Zujin Zhang, Xian Yang (2016)

Colloquium Mathematicae

Similarity:

We study the Cauchy problem for the 3D MHD system with damping terms ε | u | α - 1 u and δ | b | β - 1 b (ε, δ > 0 and α, β ≥ 1), and show that the strong solution exists globally for any α, β > 3. This improves the previous results significantly.

Classes of hypergraphs with sum number one

Hanns-Martin Teichert (2000)

Discussiones Mathematicae Graph Theory

Similarity:

A hypergraph ℋ is a sum hypergraph iff there are a finite S ⊆ ℕ⁺ and d̲,d̅ ∈ ℕ⁺ with 1 < d̲ < d̅ such that ℋ is isomorphic to the hypergraph d ̲ , d ̅ ( S ) = ( V , ) where V = S and = e S : d ̲ < | e | < d ̅ v e v S . For an arbitrary hypergraph ℋ the sum number(ℋ ) is defined to be the minimum number of isolatedvertices w , . . . , w σ V such that w , . . . , w σ is a sum hypergraph. For graphs it is known that cycles Cₙ and wheels Wₙ have sum numbersgreater than one. Generalizing these graphs we prove for the hypergraphs ₙ and ₙ that under a certain condition...

Intrinsic linking and knotting are arbitrarily complex

Erica Flapan, Blake Mellor, Ramin Naimi (2008)

Fundamenta Mathematicae

Similarity:

We show that, given any n and α, any embedding of any sufficiently large complete graph in ℝ³ contains an oriented link with components Q₁, ..., Qₙ such that for every i ≠ j, | l k ( Q i , Q j ) | α and | a ( Q i ) | α , where a ( Q i ) denotes the second coefficient of the Conway polynomial of Q i .

A note on the independent domination number versus the domination number in bipartite graphs

Shaohui Wang, Bing Wei (2017)

Czechoslovak Mathematical Journal

Similarity:

Let γ ( G ) and i ( G ) be the domination number and the independent domination number of G , respectively. Rad and Volkmann posted a conjecture that i ( G ) / γ ( G ) Δ ( G ) / 2 for any graph G , where Δ ( G ) is its maximum degree (see N. J. Rad, L. Volkmann (2013)). In this work, we verify the conjecture for bipartite graphs. Several graph classes attaining the extremal bound and graphs containing odd cycles with the ratio larger than Δ ( G ) / 2 are provided as well.