Displaying similar documents to “Connected global offensive k-alliances in graphs”

Algebraic connectivity of k -connected graphs

Stephen J. Kirkland, Israel Rocha, Vilmar Trevisan (2015)

Czechoslovak Mathematical Journal

Similarity:

Let G be a k -connected graph with k 2 . A hinge is a subset of k vertices whose deletion from G yields a disconnected graph. We consider the algebraic connectivity and Fiedler vectors of such graphs, paying special attention to the signs of the entries in Fiedler vectors corresponding to vertices in a hinge, and to vertices in the connected components at a hinge. The results extend those in Fiedler’s papers Algebraic connectivity of graphs (1973), A property of eigenvectors of nonnegative...

Domination numbers in graphs with removed edge or set of edges

Magdalena Lemańska (2005)

Discussiones Mathematicae Graph Theory

Similarity:

It is known that the removal of an edge from a graph G cannot decrease a domination number γ(G) and can increase it by at most one. Thus we can write that γ(G) ≤ γ(G-e) ≤ γ(G)+1 when an arbitrary edge e is removed. Here we present similar inequalities for the weakly connected domination number γ w and the connected domination number γ c , i.e., we show that γ w ( G ) γ w ( G - e ) γ w ( G ) + 1 and γ c ( G ) γ c ( G - e ) γ c ( G ) + 2 if G and G-e are connected. Additionally we show that γ w ( G ) γ w ( G - E ) γ w ( G ) + p - 1 and γ c ( G ) γ c ( G - E ) γ c ( G ) + 2 p - 2 if G and G - Eₚ are connected and Eₚ = E(Hₚ) where Hₚ of order...

Graph domination in distance two

Gábor Bacsó, Attila Tálos, Zsolt Tuza (2005)

Discussiones Mathematicae Graph Theory

Similarity:

Let G = (V,E) be a graph, and k ≥ 1 an integer. A subgraph D is said to be k-dominating in G if every vertex of G-D is at distance at most k from some vertex of D. For a given class of graphs, Domₖ is the set of those graphs G in which every connected induced subgraph H has some k-dominating induced subgraph D ∈ which is also connected. In our notation, Dom coincides with Dom₁. In this paper we prove that D o m D o m u = D o m u holds for u = all connected graphs without induced P u (u ≥ 2). (In particular,...

A remark on the (2,2)-domination number

Torsten Korneffel, Dirk Meierling, Lutz Volkmann (2008)

Discussiones Mathematicae Graph Theory

Similarity:

A subset D of the vertex set of a graph G is a (k,p)-dominating set if every vertex v ∈ V(G)∖D is within distance k to at least p vertices in D. The parameter γ k , p ( G ) denotes the minimum cardinality of a (k,p)-dominating set of G. In 1994, Bean, Henning and Swart posed the conjecture that γ k , p ( G ) ( p / ( p + k ) ) n ( G ) for any graph G with δₖ(G) ≥ k+p-1, where the latter means that every vertex is within distance k to at least k+p-1 vertices other than itself. In 2005, Fischermann and Volkmann confirmed this conjecture...

Proper connection number of bipartite graphs

Jun Yue, Meiqin Wei, Yan Zhao (2018)

Czechoslovak Mathematical Journal

Similarity:

An edge-colored graph G is proper connected if every pair of vertices is connected by a proper path. The proper connection number of a connected graph G , denoted by pc ( G ) , is the smallest number of colors that are needed to color the edges of G in order to make it proper connected. In this paper, we obtain the sharp upper bound for pc ( G ) of a general bipartite graph G and a series of extremal graphs. Additionally, we give a proper 2 -coloring for a connected bipartite graph G having δ ( G ) 2 and a dominating...

Generalized connectivity of some total graphs

Yinkui Li, Yaping Mao, Zhao Wang, Zongtian Wei (2021)

Czechoslovak Mathematical Journal

Similarity:

We study the generalized k -connectivity κ k ( G ) as introduced by Hager in 1985, as well as the more recently introduced generalized k -edge-connectivity λ k ( G ) . We determine the exact value of κ k ( G ) and λ k ( G ) for the line graphs and total graphs of trees, unicyclic graphs, and also for complete graphs for the case k = 3 .

On characterization of uniquely 3-list colorable complete multipartite graphs

Yancai Zhao, Erfang Shan (2010)

Discussiones Mathematicae Graph Theory

Similarity:

For each vertex v of a graph G, if there exists a list of k colors, L(v), such that there is a unique proper coloring for G from this collection of lists, then G is called a uniquely k-list colorable graph. Ghebleh and Mahmoodian characterized uniquely 3-list colorable complete multipartite graphs except for nine graphs: K 2 , 2 , r r ∈ 4,5,6,7,8, K 2 , 3 , 4 , K 1 * 4 , 4 , K 1 * 4 , 5 , K 1 * 5 , 4 . Also, they conjectured that the nine graphs are not U3LC graphs. After that, except for K 2 , 2 , r r ∈ 4,5,6,7,8, the others have been proved not...

On the connectivity of finite subset spaces

Jacob Mostovoy, Rustam Sadykov (2012)

Fundamenta Mathematicae

Similarity:

We prove that the space e x p k S m + 1 of nonempty subsets of cardinality at most k in a bouquet of m+1-dimensional spheres is (m+k-2)-connected. This, as shown by Tuffley, implies that the space e x p k X is (m+k-2)-connected for any m-connected cell complex X.

The geodetic number of strong product graphs

A.P. Santhakumaran, S.V. Ullas Chandran (2010)

Discussiones Mathematicae Graph Theory

Similarity:

For two vertices u and v of a connected graph G, the set I G [ u , v ] consists of all those vertices lying on u-v geodesics in G. Given a set S of vertices of G, the union of all sets I G [ u , v ] for u,v ∈ S is denoted by I G [ S ] . A set S ⊆ V(G) is a geodetic set if I G [ S ] = V ( G ) and the minimum cardinality of a geodetic set is its geodetic number g(G) of G. Bounds for the geodetic number of strong product graphs are obtainted and for several classes improved bounds and exact values are obtained.

On distance Laplacian energy in terms of graph invariants

Hilal A. Ganie, Rezwan Ul Shaban, Bilal A. Rather, Shariefuddin Pirzada (2023)

Czechoslovak Mathematical Journal

Similarity:

For a simple connected graph G of order n having distance Laplacian eigenvalues ρ 1 L ρ 2 L ρ n L , the distance Laplacian energy DLE ( G ) is defined as DLE ( G ) = i = 1 n | ρ i L - 2 W ( G ) / n | , where W ( G ) is the Wiener index of G . We obtain a relationship between the Laplacian energy and the distance Laplacian energy for graphs with diameter 2. We obtain lower bounds for the distance Laplacian energy DLE ( G ) in terms of the order n , the Wiener index W ( G ) , the independence number, the vertex connectivity number and other given parameters. We characterize the...

Bounds on the global offensive k-alliance number in graphs

Mustapha Chellali, Teresa W. Haynes, Bert Randerath, Lutz Volkmann (2009)

Discussiones Mathematicae Graph Theory

Similarity:

Let G = (V(G),E(G)) be a graph, and let k ≥ 1 be an integer. A set S ⊆ V(G) is called a global offensive k-alliance if |N(v)∩S| ≥ |N(v)-S|+k for every v ∈ V(G)-S, where N(v) is the neighborhood of v. The global offensive k-alliance number γ k ( G ) is the minimum cardinality of a global offensive k-alliance in G. We present different bounds on γ k ( G ) in terms of order, maximum degree, independence number, chromatic number and minimum degree.

2-halvable complete 4-partite graphs

Dalibor Fronček (1998)

Discussiones Mathematicae Graph Theory

Similarity:

A complete 4-partite graph K m , m , m , m is called d-halvable if it can be decomposed into two isomorphic factors of diameter d. In the class of graphs K m , m , m , m with at most one odd part all d-halvable graphs are known. In the class of biregular graphs K m , m , m , m with four odd parts (i.e., the graphs K m , m , m , n and K m , m , n , n ) all d-halvable graphs are known as well, except for the graphs K m , m , n , n when d = 2 and n ≠ m. We prove that such graphs are 2-halvable iff n,m ≥ 3. We also determine a new class of non-halvable graphs K m , m , m , m with three...

The extremal irregularity of connected graphs with given number of pendant vertices

Xiaoqian Liu, Xiaodan Chen, Junli Hu, Qiuyun Zhu (2022)

Czechoslovak Mathematical Journal

Similarity:

The irregularity of a graph G = ( V , E ) is defined as the sum of imbalances | d u - d v | over all edges u v E , where d u denotes the degree of the vertex u in G . This graph invariant, introduced by Albertson in 1997, is a measure of the defect of regularity of a graph. In this paper, we completely determine the extremal values of the irregularity of connected graphs with n vertices and p pendant vertices ( 1 p n - 1 ), and characterize the corresponding extremal graphs.

Roughness in G -graphs

Bibi N. Onagh (2020)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

G -graphs are a type of graphs associated to groups, which were proposed by A. Bretto and A. Faisant (2005). In this paper, we first give some theorems regarding G -graphs. Then we introduce the notion of rough G -graphs and investigate some important properties of these graphs.

On generalized shift graphs

Christian Avart, Tomasz Łuczak, Vojtěch Rödl (2014)

Fundamenta Mathematicae

Similarity:

In 1968 Erdős and Hajnal introduced shift graphs as graphs whose vertices are the k-element subsets of [n] = 1,...,n (or of an infinite cardinal κ ) and with two k-sets A = a , . . . , a k and B = b , . . . , b k joined if a < a = b < a = b < < a k = b k - 1 < b k . They determined the chromatic number of these graphs. In this paper we extend this definition and study the chromatic number of graphs defined similarly for other types of mutual position with respect to the underlying ordering. As a consequence of our result, we show the existence of a graph with...

Paired domination in prisms of graphs

Christina M. Mynhardt, Mark Schurch (2011)

Discussiones Mathematicae Graph Theory

Similarity:

The paired domination number γ p r ( G ) of a graph G is the smallest cardinality of a dominating set S of G such that ⟨S⟩ has a perfect matching. The generalized prisms πG of G are the graphs obtained by joining the vertices of two disjoint copies of G by |V(G)| independent edges. We provide characterizations of the following three classes of graphs: γ p r ( π G ) = 2 γ p r ( G ) for all πG; γ p r ( K G ) = 2 γ p r ( G ) ; γ p r ( K G ) = γ p r ( G ) .