Displaying similar documents to “Roman bondage in graphs”

On locating-domination in graphs

Mustapha Chellali, Malika Mimouni, Peter J. Slater (2010)

Discussiones Mathematicae Graph Theory

Similarity:

A set D of vertices in a graph G = (V,E) is a locating-dominating set (LDS) if for every two vertices u,v of V-D the sets N(u)∩ D and N(v)∩ D are non-empty and different. The locating-domination number γ L ( G ) is the minimum cardinality of a LDS of G, and the upper locating-domination number, Γ L ( G ) is the maximum cardinality of a minimal LDS of G. We present different bounds on Γ L ( G ) and γ L ( G ) .

On double domination in graphs

Jochen Harant, Michael A. Henning (2005)

Discussiones Mathematicae Graph Theory

Similarity:

In a graph G, a vertex dominates itself and its neighbors. A subset S ⊆ V(G) is a double dominating set of G if S dominates every vertex of G at least twice. The minimum cardinality of a double dominating set of G is the double domination number γ × 2 ( G ) . A function f(p) is defined, and it is shown that γ × 2 ( G ) = m i n f ( p ) , where the minimum is taken over the n-dimensional cube C = p = ( p , . . . , p ) | p i I R , 0 p i 1 , i = 1 , . . . , n . Using this result, it is then shown that if G has order n with minimum degree δ and average degree d, then γ × 2 ( G ) ( ( l n ( 1 + d ) + l n δ + 1 ) / δ ) n .

On the total k-domination number of graphs

Adel P. Kazemi (2012)

Discussiones Mathematicae Graph Theory

Similarity:

Let k be a positive integer and let G = (V,E) be a simple graph. The k-tuple domination number γ × k ( G ) of G is the minimum cardinality of a k-tuple dominating set S, a set that for every vertex v ∈ V, | N G [ v ] S | k . Also the total k-domination number γ × k , t ( G ) of G is the minimum cardinality of a total k -dominating set S, a set that for every vertex v ∈ V, | N G ( v ) S | k . The k-transversal number τₖ(H) of a hypergraph H is the minimum size of a subset S ⊆ V(H) such that |S ∩e | ≥ k for every edge e ∈ E(H). We know that for...

Domination and independence subdivision numbers of graphs

Teresa W. Haynes, Sandra M. Hedetniemi, Stephen T. Hedetniemi (2000)

Discussiones Mathematicae Graph Theory

Similarity:

The domination subdivision number s d γ ( G ) of a graph is the minimum number of edges that must be subdivided (where an edge can be subdivided at most once) in order to increase the domination number. Arumugam showed that this number is at most three for any tree, and conjectured that the upper bound of three holds for any graph. Although we do not prove this interesting conjecture, we give an upper bound for the domination subdivision number for any graph G in terms of the minimum degrees of...

Full domination in graphs

Robert C. Brigham, Gary Chartrand, Ronald D. Dutton, Ping Zhang (2001)

Discussiones Mathematicae Graph Theory

Similarity:

For each vertex v in a graph G, let there be associated a subgraph H v of G. The vertex v is said to dominate H v as well as dominate each vertex and edge of H v . A set S of vertices of G is called a full dominating set if every vertex of G is dominated by some vertex of S, as is every edge of G. The minimum cardinality of a full dominating set of G is its full domination number γ F H ( G ) . A full dominating set of G of cardinality γ F H ( G ) is called a γ F H -set of G. We study three types of full domination in...

Paired domination in prisms of graphs

Christina M. Mynhardt, Mark Schurch (2011)

Discussiones Mathematicae Graph Theory

Similarity:

The paired domination number γ p r ( G ) of a graph G is the smallest cardinality of a dominating set S of G such that ⟨S⟩ has a perfect matching. The generalized prisms πG of G are the graphs obtained by joining the vertices of two disjoint copies of G by |V(G)| independent edges. We provide characterizations of the following three classes of graphs: γ p r ( π G ) = 2 γ p r ( G ) for all πG; γ p r ( K G ) = 2 γ p r ( G ) ; γ p r ( K G ) = γ p r ( G ) .

The extremal irregularity of connected graphs with given number of pendant vertices

Xiaoqian Liu, Xiaodan Chen, Junli Hu, Qiuyun Zhu (2022)

Czechoslovak Mathematical Journal

Similarity:

The irregularity of a graph G = ( V , E ) is defined as the sum of imbalances | d u - d v | over all edges u v E , where d u denotes the degree of the vertex u in G . This graph invariant, introduced by Albertson in 1997, is a measure of the defect of regularity of a graph. In this paper, we completely determine the extremal values of the irregularity of connected graphs with n vertices and p pendant vertices ( 1 p n - 1 ), and characterize the corresponding extremal graphs.

On the adjacent eccentric distance sum of graphs

Halina Bielak, Katarzyna Wolska (2014)

Annales Universitatis Mariae Curie-Sklodowska, sectio A – Mathematica

Similarity:

In this paper we show bounds for the adjacent eccentric distance sum of graphs in terms of Wiener index, maximum degree and minimum degree. We extend some earlier results of Hua and Yu [Bounds for the Adjacent Eccentric Distance Sum, International Mathematical Forum, Vol. 7 (2002) no. 26, 1289–1294]. The adjacent eccentric distance sum index of the graph G is defined as ξ s v ( G ) = v V ( G ) ε ( v ) D ( v ) d e g ( v ) , where ε ( v ) is the eccentricity of the vertex v , d e g ( v ) is the degree of the vertex v and D ( v ) = u V ( G ) d ( u , v ) is the sum of all distances from...

Characterization by intersection graph of some families of finite nonsimple groups

Hossein Shahsavari, Behrooz Khosravi (2021)

Czechoslovak Mathematical Journal

Similarity:

For a finite group G , Γ ( G ) , the intersection graph of G , is a simple graph whose vertices are all nontrivial proper subgroups of G and two distinct vertices H and K are adjacent when H K 1 . In this paper, we classify all finite nonsimple groups whose intersection graphs have a leaf and also we discuss the characterizability of them using their intersection graphs.

A note on the independent domination number versus the domination number in bipartite graphs

Shaohui Wang, Bing Wei (2017)

Czechoslovak Mathematical Journal

Similarity:

Let γ ( G ) and i ( G ) be the domination number and the independent domination number of G , respectively. Rad and Volkmann posted a conjecture that i ( G ) / γ ( G ) Δ ( G ) / 2 for any graph G , where Δ ( G ) is its maximum degree (see N. J. Rad, L. Volkmann (2013)). In this work, we verify the conjecture for bipartite graphs. Several graph classes attaining the extremal bound and graphs containing odd cycles with the ratio larger than Δ ( G ) / 2 are provided as well.

Some remarks on α-domination

Franz Dahme, Dieter Rautenbach, Lutz Volkmann (2004)

Discussiones Mathematicae Graph Theory

Similarity:

Let α ∈ (0,1) and let G = ( V G , E G ) be a graph. According to Dunbar, Hoffman, Laskar and Markus [3] a set D V G is called an α-dominating set of G, if | N G ( u ) D | α d G ( u ) for all u V G D . We prove a series of upper bounds on the α-domination number of a graph G defined as the minimum cardinality of an α-dominating set of G.

Domination Subdivision Numbers

Teresa W. Haynes, Sandra M. Hedetniemi, Stephen T. Hedetniemi, David P. Jacobs, James Knisely, Lucas C. van der Merwe (2001)

Discussiones Mathematicae Graph Theory

Similarity:

A set S of vertices of a graph G = (V,E) is a dominating set if every vertex of V-S is adjacent to some vertex in S. The domination number γ(G) is the minimum cardinality of a dominating set of G, and the domination subdivision number s d γ ( G ) is the minimum number of edges that must be subdivided (each edge in G can be subdivided at most once) in order to increase the domination number. Arumugam conjectured that 1 s d γ ( G ) 3 for any graph G. We give a counterexample to this conjecture. On the other hand,...

Secure domination and secure total domination in graphs

William F. Klostermeyer, Christina M. Mynhardt (2008)

Discussiones Mathematicae Graph Theory

Similarity:

A secure (total) dominating set of a graph G = (V,E) is a (total) dominating set X ⊆ V with the property that for each u ∈ V-X, there exists x ∈ X adjacent to u such that ( X - x ) u is (total) dominating. The smallest cardinality of a secure (total) dominating set is the secure (total) domination number γ s ( G ) ( γ s t ( G ) ) . We characterize graphs with equal total and secure total domination numbers. We show that if G has minimum degree at least two, then γ s t ( G ) γ s ( G ) . We also show that γ s t ( G ) is at most twice the clique covering...

On 𝓕-independence in graphs

Frank Göring, Jochen Harant, Dieter Rautenbach, Ingo Schiermeyer (2009)

Discussiones Mathematicae Graph Theory

Similarity:

Let be a set of graphs and for a graph G let α ( G ) and α * ( G ) denote the maximum order of an induced subgraph of G which does not contain a graph in as a subgraph and which does not contain a graph in as an induced subgraph, respectively. Lower bounds on α ( G ) and α * ( G ) are presented.

Degree sums of adjacent vertices for traceability of claw-free graphs

Tao Tian, Liming Xiong, Zhi-Hong Chen, Shipeng Wang (2022)

Czechoslovak Mathematical Journal

Similarity:

The line graph of a graph G , denoted by L ( G ) , has E ( G ) as its vertex set, where two vertices in L ( G ) are adjacent if and only if the corresponding edges in G have a vertex in common. For a graph H , define σ ¯ 2 ( H ) = min { d ( u ) + d ( v ) : u v E ( H ) } . Let H be a 2-connected claw-free simple graph of order n with δ ( H ) 3 . We show that, if σ ¯ 2 ( H ) 1 7 ( 2 n - 5 ) and n is sufficiently large, then either H is traceable or the Ryjáček’s closure cl ( H ) = L ( G ) , where G is an essentially 2 -edge-connected triangle-free graph that can be contracted to one of the two graphs of order 10...

On the intersection graph of a finite group

Hossein Shahsavari, Behrooz Khosravi (2017)

Czechoslovak Mathematical Journal

Similarity:

For a finite group G , the intersection graph of G which is denoted by Γ ( G ) is an undirected graph such that its vertices are all nontrivial proper subgroups of G and two distinct vertices H and K are adjacent when H K 1 . In this paper we classify all finite groups whose intersection graphs are regular. Also, we find some results on the intersection graphs of simple groups and finally we study the structure of Aut ( Γ ( G ) ) .