Displaying similar documents to “The role of Onofri type inequalities in the symmetry properties of extremals for Caffarelli-Kohn-Nirenberg inequalities, in two space dimensions”

Moser-Trudinger and logarithmic HLS inequalities for systems

Itai Shafrir, Gershon Wolansky (2005)

Journal of the European Mathematical Society

Similarity:

We prove several optimal Moser–Trudinger and logarithmic Hardy–Littlewood–Sobolev inequalities for systems in two dimensions. These include inequalities on the sphere S 2 , on a bounded domain Ω 2 and on all of 2 . In some cases we also address the question of existence of minimizers.

Majorization of sequences, sharp vector Khinchin inequalities, and bisubharmonic functions

Albert Baernstein II, Robert C. Culverhouse (2002)

Studia Mathematica

Similarity:

Let X = i = 1 k a i U i , Y = i = 1 k b i U i , where the U i are independent random vectors, each uniformly distributed on the unit sphere in ℝⁿ, and a i , b i are real constants. We prove that if b ² i is majorized by a ² i in the sense of Hardy-Littlewood-Pólya, and if Φ: ℝⁿ → ℝ is continuous and bisubharmonic, then EΦ(X) ≤ EΦ(Y). Consequences include most of the known sharp L ² - L p Khinchin inequalities for sums of the form X. For radial Φ, bisubharmonicity is necessary as well as sufficient for the majorization inequality to always hold. Counterparts...

Regularity of stable solutions of p -Laplace equations through geometric Sobolev type inequalities

Daniele Castorina, Manel Sanchón (2015)

Journal of the European Mathematical Society

Similarity:

We prove a Sobolev and a Morrey type inequality involving the mean curvature and the tangential gradient with respect to the level sets of the function that appears in the inequalities. Then, as an application, we establish a priori estimates for semistable solutions of Δ p u = g ( u ) in a smooth bounded domain Ω n . In particular, we obtain new L r and W 1 , r bounds for the extremal solution u when the domain is strictly convex. More precisely, we prove that u L ( Ω ) if n p + 2 and u L n p n - p - 2 ( Ω ) W 0 1 , p ( Ω ) if n > p + 2 .

Asymmetric covariance estimates of Brascamp–Lieb type and related inequalities for log-concave measures

Eric A. Carlen, Dario Cordero-Erausquin, Elliott H. Lieb (2013)

Annales de l'I.H.P. Probabilités et statistiques

Similarity:

An inequality of Brascamp and Lieb provides a bound on the covariance of two functions with respect to log-concave measures. The bound estimates the covariance by the product of the L 2 norms of the gradients of the functions, where the magnitude of the gradient is computed using an inner product given by the inverse Hessian matrix of the potential of the log-concave measure. Menz and Otto [Uniform logarithmic Sobolev inequalities for conservative spin systems with super-quadratic single-site...

Lower bounds for Schrödinger operators in H¹(ℝ)

Ronan Pouliquen (1999)

Studia Mathematica

Similarity:

We prove trace inequalities of type | | u ' | | L 2 2 + j k j | u ( a j ) | 2 λ | | u | | L 2 2 where u H 1 ( ) , under suitable hypotheses on the sequences a j j and k j j , with the first sequence increasing and the second bounded.

Lieb–Thirring inequalities on the half-line with critical exponent

Tomas Ekholm, Rupert Frank (2008)

Journal of the European Mathematical Society

Similarity:

We consider the operator - d 2 / d r 2 - V in L 2 ( + ) with Dirichlet boundary condition at the origin. For the moments of its negative eigenvalues we prove the bound tr ( - d 2 / d r 2 - V ) - γ C γ , α + ( V ( r ) - 1 / ( 4 r 2 ) ) + γ + ( 1 + α ) / 2 r α d r for any α [ 0 , 1 ) and γ ( 1 - α ) / 2 . This includes a Lieb-Thirring inequality in the critical endpoint case.

Best constants for the isoperimetric inequality in quantitative form

Marco Cicalese, Gian Paolo Leonardi (2013)

Journal of the European Mathematical Society

Similarity:

We prove some results in the context of isoperimetric inequalities with quantitative terms. In the 2 -dimensional case, our main contribution is a method for determining the optimal coefficients c 1 , ... , c m in the inequality δ P ( E ) k = 1 m c k α ( E ) k + o ( α ( E ) m ) , valid for each Borel set E with positive and finite area, with δ P ( E ) and α ( E ) being, respectively, the 𝑖𝑠𝑜𝑝𝑒𝑟𝑖𝑚𝑒𝑡𝑟𝑖𝑐𝑑𝑒𝑓𝑖𝑐𝑖𝑡 and the 𝐹𝑟𝑎𝑒𝑛𝑘𝑒𝑙𝑎𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦 of E . In n dimensions, besides proving existence and regularity properties of minimizers for a wide class of 𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑎𝑡𝑖𝑣𝑒𝑖𝑠𝑜𝑝𝑒𝑟𝑖𝑚𝑒𝑡𝑟𝑖𝑐𝑞𝑢𝑜𝑡𝑖𝑒𝑛𝑡𝑠 including the lower semicontinuous extension of δ P ( E ) α ( E ) 2 , we...

Some limit theorems for m -pairwise negative quadrant dependent random variables

Yongfeng Wu, Jiangyan Peng (2018)

Kybernetika

Similarity:

The authors first establish the Marcinkiewicz-Zygmund inequalities with exponent p ( 1 p 2 ) for m -pairwise negatively quadrant dependent ( m -PNQD) random variables. By means of the inequalities, the authors obtain some limit theorems for arrays of rowwise m -PNQD random variables, which extend and improve the corresponding results in [Y. Meng and Z. Lin (2009)] and [H. S. Sung (2013)]. It is worthy to point out that the open problem of [H. S. Sung, S. Lisawadi, and A. Volodin (2008)] can be...

Equivalence of measures of smoothness in L p ( S d - 1 ) , 1 < p < ∞

F. Dai, Z. Ditzian, Hongwei Huang (2010)

Studia Mathematica

Similarity:

Suppose Δ̃ is the Laplace-Beltrami operator on the sphere S d - 1 , Δ ρ k f ( x ) = Δ ρ Δ ρ k - 1 f ( x ) and Δ ρ f ( x ) = f ( ρ x ) - f ( x ) where ρ ∈ SO(d). Then ω m ( f , t ) L p ( S d - 1 ) s u p Δ ρ m f L p ( S d - 1 ) : ρ S O ( d ) , m a x x S d - 1 ρ x · x c o s t and K ̃ ( f , t m ) p i n f f - g L p ( S d - 1 ) + t m ( - Δ ̃ ) m / 2 g L p ( S d - 1 ) : g ( ( - Δ ̃ ) m / 2 ) are equivalent for 1 < p < ∞. We note that for even m the relation was recently investigated by the second author. The equivalence yields an extension of the results on sharp Jackson inequalities on the sphere. A new strong converse inequality for L p ( S d - 1 ) given in this paper plays a significant role in the proof.

A priori bounds for positive radial solutions of quasilinear equations of Lane–Emden type

Soohyun Bae (2023)

Archivum Mathematicum

Similarity:

We consider the quasilinear equation Δ p u + K ( | x | ) u q = 0 , and present the proof of the local existence of positive radial solutions near 0 under suitable conditions on K . Moreover, we provide a priori estimates of positive radial solutions near when r - K ( r ) for - p is bounded near .

Remarks on the Bourgain-Brezis-Mironescu Approach to Sobolev Spaces

B. Bojarski (2011)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

For a function f L l o c p ( ) the notion of p-mean variation of order 1, p ( f , ) is defined. It generalizes the concept of F. Riesz variation of functions on the real line ℝ¹ to ℝⁿ, n > 1. The characterisation of the Sobolev space W 1 , p ( ) in terms of p ( f , ) is directly related to the characterisation of W 1 , p ( ) by Lipschitz type pointwise inequalities of Bojarski, Hajłasz and Strzelecki and to the Bourgain-Brezis-Mironescu approach.

Geometry and inequalities of geometric mean

Trung Hoa Dinh, Sima Ahsani, Tin-Yau Tam (2016)

Czechoslovak Mathematical Journal

Similarity:

We study some geometric properties associated with the t -geometric means A t B : = A 1 / 2 ( A - 1 / 2 B A - 1 / 2 ) t A 1 / 2 of two n × n positive definite matrices A and B . Some geodesical convexity results with respect to the Riemannian structure of the n × n positive definite matrices are obtained. Several norm inequalities with geometric mean are obtained. In particular, we generalize a recent result of Audenaert (2015). Numerical counterexamples are given for some inequality questions. A conjecture on the geometric mean inequality regarding...

Energy and Morse index of solutions of Yamabe type problems on thin annuli

Mohammed Ben Ayed, Khalil El Mehdi, Mohameden Ould Ahmedou, Filomena Pacella (2005)

Journal of the European Mathematical Society

Similarity:

We consider the Yamabe type family of problems ( P ε ) : Δ u ε = u ε ( n + 2 ) / ( n 2 ) , u ε > 0 in A ε , u ε = 0 on A ε , where A ε is an annulus-shaped domain of n , n 3 , which becomes thinner as ε 0 . We show that for every solution u ε , the energy A ε | u | 2 as well as the Morse index tend to infinity as ε 0 . This is proved through a fine blow up analysis of appropriate scalings of solutions whose limiting profiles are regular, as well as of singular solutions of some elliptic problem on n , a half-space or an infinite strip. Our argument also involves a Liouville...

Existence and nonexistence results for a class of linear and semilinear parabolic equations related to some Caffarelli-Kohn-Nirenberg inequalities

Boumediene Abdellaoui, Eduardo Colorado, Ireneo Peral (2004)

Journal of the European Mathematical Society

Similarity:

In this work we study the problem u t div ( | x | 2 γ u ) = λ u α | x | 2 ( γ + 1 ) + f in Ω × ( 0 , T ) , u 0 in Ω × ( 0 , T ) , u = 0 on Ω × ( 0 , T ) , u ( x , 0 ) = u 0 ( x ) in Ω , Ω N ( N 2 ) is a bounded regular domain such that 0 Ω , λ > 0 , α > 0 , - < γ < ( N 2 ) / 2 , f and u 0 are positive functions such that f L 1 ( Ω × ( 0 , T ) ) and u 0 L 1 ( Ω ) . The main points under analysis are: (i) spectral instantaneous and complete blow-up related to the Harnack inequality in the case α = 1 , 1 + γ > 0 ; (ii) the nonexistence of solutions if α > 1 , 1 + γ > 0 ; (iii) a uniqueness result for weak solutions (in the distribution sense); (iv) further results on existence of weak solutions...

A bifurcation theory for some nonlinear elliptic equations

Biagio Ricceri (2003)

Colloquium Mathematicae

Similarity:

We deal with the problem ⎧ -Δu = f(x,u) + λg(x,u), in Ω, ⎨ ( P λ ) ⎩ u Ω = 0 where Ω ⊂ ℝⁿ is a bounded domain, λ ∈ ℝ, and f,g: Ω×ℝ → ℝ are two Carathéodory functions with f(x,0) = g(x,0) = 0. Under suitable assumptions, we prove that there exists λ* > 0 such that, for each λ ∈ (0,λ*), problem ( P λ ) admits a non-zero, non-negative strong solution u λ p 2 W 2 , p ( Ω ) such that l i m λ 0 | | u λ | | W 2 , p ( Ω ) = 0 for all p ≥ 2. Moreover, the function λ I λ ( u λ ) is negative and decreasing in ]0,λ*[, where I λ is the energy functional related to ( P λ ). ...

On bifurcation and uniqueness results for some semilinear elliptic equations involving a singular potential

Manuela Chaves, Jesús García-Azorero (2006)

Journal of the European Mathematical Society

Similarity:

We present some results concerning the problem Δ u = λ u | x | 2 + u q , u > 0 in Ω , u | Ω = 0 , where 0 < q < ( N + 2 ) / ( N 2 ) , q 1 , λ 0 and Ω is a smooth bounded domain containing the origin. In particular, bifurcation and uniqueness results are discussed.

Coppersmith-Rivlin type inequalities and the order of vanishing of polynomials at 1

(2016)

Acta Arithmetica

Similarity:

For n ∈ ℕ, L > 0, and p ≥ 1 let κ p ( n , L ) be the largest possible value of k for which there is a polynomial P ≢ 0 of the form P ( x ) = j = 0 n a j x j , | a 0 | L ( j = 1 n | a j | p ) 1 / p , a j , such that ( x - 1 ) k divides P(x). For n ∈ ℕ, L > 0, and q ≥ 1 let μ q ( n , L ) be the smallest value of k for which there is a polynomial Q of degree k with complex coefficients such that | Q ( 0 ) | > 1 / L ( j = 1 n | Q ( j ) | q ) 1 / q . We find the size of κ p ( n , L ) and μ q ( n , L ) for all n ∈ ℕ, L > 0, and 1 ≤ p,q ≤ ∞. The result about μ ( n , L ) is due to Coppersmith and Rivlin, but our proof is completely different and much shorter even...

Sobolev type inequalities for fractional maximal functions and Riesz potentials in Morrey spaces of variable exponent on half spaces

Yoshihiro Mizuta, Tetsu Shimomura (2023)

Czechoslovak Mathematical Journal

Similarity:

Our aim is to establish Sobolev type inequalities for fractional maximal functions M , ν f and Riesz potentials I , α f in weighted Morrey spaces of variable exponent on the half space . We also obtain Sobolev type inequalities for a C 1 function on . As an application, we obtain Sobolev type inequality for double phase functionals with variable exponents Φ ( x , t ) = t p ( x ) + ( b ( x ) t ) q ( x ) , where p ( · ) and q ( · ) satisfy log-Hölder conditions, p ( x ) < q ( x ) for x , and b ( · ) is nonnegative and Hölder continuous of order θ ( 0 , 1 ] .

Some Hölder-logarithmic estimates on Hardy-Sobolev spaces

Imed Feki, Ameni Massoudi (2024)

Czechoslovak Mathematical Journal

Similarity:

We prove some optimal estimates of Hölder-logarithmic type in the Hardy-Sobolev spaces H k , p ( G ) , where k * , 1 p and G is either the open unit disk 𝔻 or the annular domain G s , 0 < s < 1 of the complex space . More precisely, we study the behavior on the interior of G of any function f belonging to the unit ball of the Hardy-Sobolev spaces H k , p ( G ) from its behavior on any open connected subset I of the boundary G of G with respect to the L 1 -norm. Our results can be viewed as an improvement and generalization of...

Functions with prescribed singularities

Giovanni Alberti, S. Baldo, G. Orlandi (2003)

Journal of the European Mathematical Society

Similarity:

The distributional k -dimensional Jacobian of a map u in the Sobolev space W 1 , k 1 which takes values in the sphere S k 1 can be viewed as the boundary of a rectifiable current of codimension k carried by (part of) the singularity of u which is topologically relevant. The main purpose of this paper is to investigate the range of the Jacobian operator; in particular, we show that any boundary M of codimension k can be realized as Jacobian of a Sobolev map valued in S k 1 . In case M is polyhedral, the...

Asymptotic analysis and sign-changing bubble towers for Lane–Emden problems

Francesca De Marchis, Isabella Ianni, Filomena Pacella (2015)

Journal of the European Mathematical Society

Similarity:

We consider the semilinear Lane–Emden problem where p > 1 and Ω is a smooth bounded domain of 2 . The aim of the paper is to analyze the asymptotic behavior of sign changing solutions of ( p ) , as p + . Among other results we show, under some symmetry assumptions on Ω , that the positive and negative parts of a family of symmetric solutions concentrate at the same point, as p + , and the limit profile looks like a tower of two bubbles given by a superposition of a regular and a singular solution of...

On the Schröder equation

M. Kuczma

Similarity:

CONTENTSPART IIntroduction............................................................................................... 31. General solution.................................................................................. 42. Preliminaries and notation................................................................ 53. C p solutions in *................................................ 74. Change of variables..............................................................................

Positivity and anti-maximum principles for elliptic operators with mixed boundary conditions

Catherine Bandle, Joachim von Below, Wolfgang Reichel (2008)

Journal of the European Mathematical Society

Similarity:

We consider linear elliptic equations - Δ u + q ( x ) u = λ u + f in bounded Lipschitz domains D N with mixed boundary conditions u / n = σ ( x ) λ u + g on D . The main feature of this boundary value problem is the appearance of λ both in the equation and in the boundary condition. In general we make no assumption on the sign of the coefficient σ ( x ) . We study positivity principles and anti-maximum principles. One of our main results states that if σ is somewhere negative, q 0 and D q ( x ) d x > 0 then there exist two eigenvalues λ - 1 , λ 1 such the positivity...