Displaying similar documents to “Two shallow-water type models for viscoelastic flows from kinetic theory for polymers solutions”

Modelling and Numerical Simulation of the Dynamics of Glaciers Including Local Damage Effects

G. Jouvet, M. Picasso, J. Rappaz, M. Huss, M. Funk (2011)

Mathematical Modelling of Natural Phenomena

Similarity:

A numerical model to compute the dynamics of glaciers is presented. Ice damage due to cracks or crevasses can be taken into account whenever needed. This model allows simulations of the past and future retreat of glaciers, the calving process or the break-off of hanging glaciers. All these phenomena are strongly affected by climate change. Ice is assumed to behave as an incompressible fluid with nonlinear viscosity, so that the ...

An anti-diffusive Lagrange-Remap scheme for multi-material compressible flows with an arbitrary number of components

Marie Billaud Friess, Samuel Kokh (2012)

ESAIM: Proceedings

Similarity:

We propose a method dedicated to the simulation of interface flows involving an arbitrary number of compressible components. Our task is two-fold: we first introduce a -component flow model that generalizes the two-material five-equation model of [2,3]. Then, we present a discretization strategy by means of a Lagrange-Remap [8,10] approach following the lines of [5,7,12]. The projection step involves an anti-dissipative mechanism derived from [11,12]. This feature allows to prevent...

Asymptotic-Preserving scheme for a two-fluid Euler-Lorentz model

Stéphane Brull, Pierre Degond, Fabrice Deluzet, Alexandre Mouton (2011)

ESAIM: Proceedings

Similarity:

The present work is devoted to the simulation of a strongly magnetized plasma as a mixture of an ion fluid and an electron fluid. For simplicity reasons, we assume that each fluid is isothermal and is modelized by Euler equations coupled with a term representing the Lorentz force, and we assume that both Euler systems are coupled through a quasi-neutrality constraint of the form  =  . The numerical...

Interface model coupling via prescribed local flux balance

Annalisa Ambroso, Christophe Chalons, Frédéric Coquel, Thomas Galié (2014)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

This paper deals with the non-conservative coupling of two one-dimensional barotropic Euler systems at an interface at = 0. The closure pressure laws differ in the domains < 0 and > 0, and a Dirac source term concentrated at = 0 models singular pressure losses. We propose two numerical methods. The first one relies on ghost state reconstructions at the interface while the second is based on a suitable relaxation framework. Both methods satisfy a well-balanced property...

Phase field method for mean curvature flow with boundary constraints

Elie Bretin, Valerie Perrier (2012)

ESAIM: Mathematical Modelling and Numerical Analysis

Similarity:

This paper is concerned with the numerical approximation of mean curvature flow  → () satisfying an additional inclusion-exclusion constraint  ⊂ () ⊂  . Classical phase field model to approximate these evolving interfaces consists in solving the Allen-Cahn equation with Dirichlet boundary conditions. In this work, we introduce a new phase field model, which can be viewed as an Allen Cahn equation with a penalized double well potential. We first justify...

Phase field method for mean curvature flow with boundary constraints

Elie Bretin, Valerie Perrier (2012)

ESAIM: Mathematical Modelling and Numerical Analysis

Similarity:

This paper is concerned with the numerical approximation of mean curvature flow  → () satisfying an additional inclusion-exclusion constraint  ⊂ () ⊂  . Classical phase field model to approximate these evolving interfaces consists in solving the Allen-Cahn equation with Dirichlet boundary conditions. In this work, we introduce a new phase field model, which can be viewed as an Allen Cahn equation with a penalized double well potential. We first justify...

A multi-D model for Raman amplification

Mathieu Colin, Thierry Colin (2011)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

In this paper, we continue the study of the Raman amplification in plasmas that we initiated in [Colin and Colin, 17 (2004) 297–330; Colin and Colin, 193 (2006) 535–562]. We point out that the Raman instability gives rise to three components. The first one is collinear to the incident laser pulse and counter propagates. In 2-D, the two other ones make a non-zero angle with the initial pulse and propagate forward. Furthermore they are symmetric with respect to the direction of propagation...

Inverse modelling of image-based patient-specific blood vessels: zero-pressure geometry and in vivo stress incorporation

Joris Bols, Joris Degroote, Bram Trachet, Benedict Verhegghe, Patrick Segers, Jan Vierendeels (2013)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

visualization of cardiovascular structures is possible using medical images. However, one has to realize that the resulting 3D geometries correspond to conditions. This entails an internal stress state to be present in the measured geometry of a blood vessel due to the presence of the blood pressure. In order to correct for this stress, this paper presents an inverse method to restore the original zero-pressure geometry of a structure, and to recover the...

Derivation of Langevin dynamics in a nonzero background flow field

Matthew Dobson, Frédéric Legoll, Tony Lelièvre, Gabriel Stoltz (2013)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

We propose a derivation of a nonequilibrium Langevin dynamics for a large particle immersed in a background flow field. A single large particle is placed in an ideal gas heat bath composed of point particles that are distributed consistently with the background flow field and that interact with the large particle through elastic collisions. In the limit of small bath atom mass, the large particle dynamics converges in law to a stochastic dynamics. This derivation follows the ideas of...

Boundary layer correctors and generalized polarization tensor for periodic rough thin layers. A review for the conductivity problem

Clair Poignard (2012)

ESAIM: Proceedings

Similarity:

We study the behaviour of the steady-state voltage potential in a material composed of a two-dimensional object surrounded by a rough thin layer and embedded in an ambient medium. The roughness of the layer is supposed to be –periodic, being the magnitude of the mean thickness of the layer, and a positive parameter describing the degree of roughness. For tending to zero, we determine the appropriate boundary layer correctors which lead to approximate transmission...

Convolutive decomposition and fast summation methods for discrete-velocity approximations of the Boltzmann equation

Clément Mouhot, Lorenzo Pareschi, Thomas Rey (2013)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

Discrete-velocity approximations represent a popular way for computing the Boltzmann collision operator. The direct numerical evaluation of such methods involve a prohibitive cost, typically ( ) where is the dimension of the velocity space. In this paper, following the ideas introduced in [C. Mouhot and L. Pareschi, 339 (2004) 71–76, C. Mouhot and L. Pareschi, 75 (2006) 1833–1852], we derive fast summation techniques for the evaluation of discrete-velocity schemes which...

Analysis of an Asymptotic Preserving Scheme for Relaxation Systems

Francis Filbet, Amélie Rambaud (2013)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

We consider an asymptotic preserving numerical scheme initially proposed by F. Filbet and S. Jin [229 (2010)] and G. Dimarco and L. Pareschi [49 (2011) 2057–2077] in the context of nonlinear and stiff kinetic equations. Here, we propose a convergence analysis of such a scheme for the approximation of a system of transport equations with a nonlinear source term, for which the asymptotic limit is given by a conservation law. We investigate the convergence of the approximate solution ( ...