Displaying similar documents to “Quantum Singularity Theory for A ( r - 1 ) and r -Spin Theory”

An effective proof of the hyperelliptic Shafarevich conjecture

Rafael von Känel (2014)

Journal de Théorie des Nombres de Bordeaux

Similarity:

Let C be a hyperelliptic curve of genus g 1 over a number field K with good reduction outside a finite set of places S of K . We prove that C has a Weierstrass model over the ring of integers of K with height effectively bounded only in terms of g , S and K . In particular, we obtain that for any given number field K , finite set of places S of K and integer g 1 one can in principle determine the set of K -isomorphism classes of hyperelliptic curves over K of genus g with good reduction outside...

The local lifting problem for actions of finite groups on curves

Ted Chinburg, Robert Guralnick, David Harbater (2011)

Annales scientifiques de l'École Normale Supérieure

Similarity:

Let k be an algebraically closed field of characteristic p > 0 . We study obstructions to lifting to characteristic 0 the faithful continuous action φ of a finite group G on k [ [ t ] ] . To each such  φ a theorem of Katz and Gabber associates an action of G on a smooth projective curve Y over k . We say that the KGB obstruction of φ vanishes if G acts on a smooth projective curve X in characteristic  0 in such a way that X / H and Y / H have the same genus for all subgroups H G . We determine for which G the KGB...

On the birational gonalities of smooth curves

E. Ballico (2014)

Annales Universitatis Mariae Curie-Sklodowska, sectio A – Mathematica

Similarity:

Let C be a smooth curve of genus g . For each positive integer r the birational r -gonality s r ( C ) of C is the minimal integer t such that there is L Pic t ( C ) with h 0 ( C , L ) = r + 1 . Fix an integer r 3 . In this paper we prove the existence of an integer g r such that for every integer g g r there is a smooth curve C of genus g with s r + 1 ( C ) / ( r + 1 ) > s r ( C ) / r , i.e. in the sequence of all birational gonalities of C at least one of the slope inequalities fails.

The basic construction from the conditional expectation on the quantum double of a finite group

Qiaoling Xin, Lining Jiang, Zhenhua Ma (2015)

Czechoslovak Mathematical Journal

Similarity:

Let G be a finite group and H a subgroup. Denote by D ( G ; H ) (or D ( G ) ) the crossed product of C ( G ) and H (or G ) with respect to the adjoint action of the latter on the former. Consider the algebra D ( G ) , e generated by D ( G ) and e , where we regard E as an idempotent operator e on D ( G ) for a certain conditional expectation E of D ( G ) onto D ( G ; H ) . Let us call D ( G ) , e the basic construction from the conditional expectation E : D ( G ) D ( G ; H ) . The paper constructs a crossed product algebra C ( G / H × G ) G , and proves that there is an algebra isomorphism between...

Invariance of the parity conjecture for p -Selmer groups of elliptic curves in a D 2 p n -extension

Thomas de La Rochefoucauld (2011)

Bulletin de la Société Mathématique de France

Similarity:

We show a p -parity result in a D 2 p n -extension of number fields L / K ( p 5 ) for the twist 1 η τ : W ( E / K , 1 η τ ) = ( - 1 ) 1 η τ , X p ( E / L ) , where E is an elliptic curve over K , η and τ are respectively the quadratic character and an irreductible representation of degree 2 of Gal ( L / K ) = D 2 p n , and X p ( E / L ) is the p -Selmer group. The main novelty is that we use a congruence result between ε 0 -factors (due to Deligne) for the determination of local root numbers in bad cases (places of additive reduction above 2 and 3). We also give applications to the p -parity conjecture...

Beyond two criteria for supersingularity: coefficients of division polynomials

Christophe Debry (2014)

Journal de Théorie des Nombres de Bordeaux

Similarity:

Let f ( x ) be a cubic, monic and separable polynomial over a field of characteristic p 3 and let E be the elliptic curve given by y 2 = f ( x ) . In this paper we prove that the coefficient at x 1 2 p ( p - 1 ) in the p –th division polynomial of E equals the coefficient at x p - 1 in f ( x ) 1 2 ( p - 1 ) . For elliptic curves over a finite field of characteristic p , the first coefficient is zero if and only if E is supersingular, which by a classical criterion of Deuring (1941) is also equivalent to the vanishing of the second coefficient. So the...

On ramified covers of the projective plane II: Generalizing Segre’s theory

Michael Friedman, Rebecca Lehman, Maxim Leyenson, Mina Teicher (2012)

Journal of the European Mathematical Society

Similarity:

The classical Segre theory gives a necessary and sufficient condition for a plane curve to be a branch curve of a (generic) projection of a smooth surface in 3 . We generalize this result for smooth surfaces in a projective space of any dimension in the following way: given two plane curves, B and E , we give a necessary and sufficient condition for B to be the branch curve of a surface X in N and E to be the image of the double curve of a 3 -model of X . In the classical Segre theory, a...

C * -points vs P -points and P -points

Jorge Martinez, Warren Wm. McGovern (2022)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

In a Tychonoff space X , the point p X is called a C * -point if every real-valued continuous function on C { p } can be extended continuously to p . Every point in an extremally disconnected space is a C * -point. A classic example is the space 𝐖 * = ω 1 + 1 consisting of the countable ordinals together with ω 1 . The point ω 1 is known to be a C * -point as well as a P -point. We supply a characterization of C * -points in totally ordered spaces. The remainder of our time is aimed at studying when a point in a product space...

On sums and products in a field

Guang-Liang Zhou, Zhi-Wei Sun (2022)

Czechoslovak Mathematical Journal

Similarity:

We study sums and products in a field. Let F be a field with ch ( F ) 2 , where ch ( F ) is the characteristic of F . For any integer k 4 , we show that any x F can be written as a 1 + + a k with a 1 , , a k F and a 1 a k = 1 , and that for any α F { 0 } we can write every x F as a 1 a k with a 1 , , a k F and a 1 + + a k = α . We also prove that for any x F and k { 2 , 3 , } there are a 1 , , a 2 k F such that a 1 + + a 2 k = x = a 1 a 2 k .

A localization property for B p q s and F p q s spaces

Hans Triebel (1994)

Studia Mathematica

Similarity:

Let f j = k a k f ( 2 j + 1 x - 2 k ) , where the sum is taken over the lattice of all points k in n having integer-valued components, j∈ℕ and a k . Let A p q s be either B p q s or F p q s (s ∈ ℝ, 0 < p < ∞, 0 < q ≤ ∞) on n . The aim of the paper is to clarify under what conditions f j | A p q s is equivalent to 2 j ( s - n / p ) ( k | a k | p ) 1 / p f | A p q s .