Displaying similar documents to “Tangent Lines and Lipschitz Differentiability Spaces”

Menger curvature and Lipschitz parametrizations in metric spaces

Immo Hahlomaa (2005)

Fundamenta Mathematicae

Similarity:

We show that pointwise bounds on the Menger curvature imply Lipschitz parametrization for general compact metric spaces. We also give some estimates on the optimal Lipschitz constants of the parametrizing maps for the metric spaces in Ω(ε), the class of bounded metric spaces E such that the maximum angle for every triple in E is at least π/2 + arcsinε. Finally, we extend Peter Jones's travelling salesman theorem to general metric spaces.

Spaces of Lipschitz functions on metric spaces

Diethard Pallaschke, Dieter Pumplün (2015)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

Similarity:

In this paper the universal properties of spaces of Lipschitz functions, defined over metric spaces, are investigated.

Infinitesimal Structure of Differentiability Spaces, and Metric Differentiation

Jeff Cheeger, Bruce Kleiner, Andrea Schioppa (2016)

Analysis and Geometry in Metric Spaces

Similarity:

We prove metric differentiation for differentiability spaces in the sense of Cheeger [10, 14, 27]. As corollarieswe give a new proof of one of the main results of [14], a proof that the Lip-lip constant of any Lip-lip space in the sense of Keith [27] is equal to 1, and new nonembeddability results.

Teoría métrica de curvas semialgebráicas.

Lev Birbrair, Alexandre C. G. Fernandes (2000)

Revista Matemática Complutense

Similarity:

We present a complete bi-Lipschitz classification of germs of semialgebraic curves (semialgebraic sets of the dimension one). For this purpose we introduce the so-called Hölder Semicomplex, a bi-Lipschitz invariant. Hölder Semicomplex is the collection of all first exponents of Newton-Puiseux expansions, for all pairs of branches of a curve. We prove that two germs of curves are bi-Lipschitz equivalent if and only if the corresponding Hölder Semicomplexes are isomorphic. We also prove...

Length of curves on Lip manifolds

Giuseppe De Cecco, Giuliana Palmieri (1990)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Similarity:

In this paper the length of a curve on a Lipschitz Riemannian manifold is defined. It is shown that the above definition is consistent with the definition of the geodesic distance already introduced by the authors, both in a geometrical and analytical way.

On the Lifshits Constant for Hyperspaces

K. Leśniak (2007)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

The Lifshits theorem states that any k-uniformly Lipschitz map with a bounded orbit on a complete metric space X has a fixed point provided k < ϰ(X) where ϰ(X) is the so-called Lifshits constant of X. For many spaces we have ϰ(X) > 1. It is interesting whether we can use the Lifshits theorem in the theory of iterated function systems. Therefore we investigate the value of the Lifshits constant for several classes of hyperspaces.

Bi-Lipschitz embeddings of hyperspaces of compact sets

Jeremy T. Tyson (2005)

Fundamenta Mathematicae

Similarity:

We study the bi-Lipschitz embedding problem for metric compacta hyperspaces. We observe that the compacta hyperspace K(X) of any separable, uniformly disconnected metric space X admits a bi-Lipschitz embedding in ℓ². If X is a countable compact metric space containing at most n nonisolated points, there is a Lipschitz embedding of K(X) in n + 1 ; in the presence of an additional convergence condition, this embedding may be chosen to be bi-Lipschitz. By way of contrast, the hyperspace K([0,1])...

On Conditions for Unrectifiability of a Metric Space

Piotr Hajłasz, Soheil Malekzadeh (2015)

Analysis and Geometry in Metric Spaces

Similarity:

We find necessary and sufficient conditions for a Lipschitz map f : E ⊂ ℝk → X into a metric space to satisfy ℋk(f(E)) = 0. An interesting feature of our approach is that despite the fact that we are dealing with arbitrary metric spaces, we employ a variant of the classical implicit function theorem. Applications include pure unrectifiability of the Heisenberg groups.