Displaying similar documents to “Semi-monotone sets”

Monotone extenders for bounded c-valued functions

Kaori Yamazaki (2010)

Studia Mathematica

Similarity:

Let c be the Banach space consisting of all convergent sequences of reals with the sup-norm, C ( A , c ) the set of all bounded continuous functions f: A → c, and C A ( X , c ) the set of all functions f: X → c which are continuous at each point of A ⊂ X. We show that a Tikhonov subspace A of a topological space X is strong Choquet in X if there exists a monotone extender u : C ( A , c ) C A ( X , c ) . This shows that the monotone extension property for bounded c-valued functions can fail in GO-spaces, which provides a negative answer...

Property of being semi-Kelley for the cartesian products and hyperspaces

Enrique Castañeda-Alvarado, Ivon Vidal-Escobar (2017)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

In this paper we construct a Kelley continuum X such that X × [ 0 , 1 ] is not semi-Kelley, this answers a question posed by J.J. Charatonik and W.J. Charatonik in A weaker form of the property of Kelley, Topology Proc. 23 (1998), 69–99. In addition, we show that the hyperspace C ( X ) is not semi- Kelley. Further we show that small Whitney levels in C ( X ) are not semi-Kelley, answering a question posed by A. Illanes in Problemas propuestos para el taller de Teoría de continuos y sus hiperespacios, Queretaro,...

Definable stratification satisfying the Whitney property with exponent 1

Beata Kocel-Cynk (2007)

Annales Polonici Mathematici

Similarity:

We prove that for a finite collection of sets A , . . . , A s k + n definable in an o-minimal structure there exists a compatible definable stratification such that for any stratum the fibers of its projection onto k satisfy the Whitney property with exponent 1.

Zero-set property of o-minimal indefinitely Peano differentiable functions

Andreas Fischer (2008)

Annales Polonici Mathematici

Similarity:

Given an o-minimal expansion ℳ of a real closed field R which is not polynomially bounded. Let denote the definable indefinitely Peano differentiable functions. If we further assume that ℳ admits cell decomposition, each definable closed subset A of Rⁿ is the zero-set of a function f:Rⁿ → R. This implies approximation of definable continuous functions and gluing of functions defined on closed definable sets.

Some results on semi-total signed graphs

Deepa Sinha, Pravin Garg (2011)

Discussiones Mathematicae Graph Theory

Similarity:

A signed graph (or sigraph in short) is an ordered pair S = ( S u , σ ) , where S u is a graph G = (V,E), called the underlying graph of S and σ:E → +, - is a function from the edge set E of S u into the set +,-, called the signature of S. The ×-line sigraph of S denoted by L × ( S ) is a sigraph defined on the line graph L ( S u ) of the graph S u by assigning to each edge ef of L ( S u ) , the product of signs of the adjacent edges e and f in S. In this paper, first we define semi-total line sigraph and semi-total point sigraph...

Expansions of o-minimal structures by sparse sets

Harvey Friedman, Chris Miller (2001)

Fundamenta Mathematicae

Similarity:

Given an o-minimal expansion ℜ of the ordered additive group of real numbers and E ⊆ ℝ, we consider the extent to which basic metric and topological properties of subsets of ℝ definable in the expansion (ℜ,E) are inherited by the subsets of ℝ definable in certain expansions of (ℜ,E). In particular, suppose that f ( E m ) has no interior for each m ∈ ℕ and f : m definable in ℜ, and that every subset of ℝ definable in (ℜ,E) has interior or is nowhere dense. Then every subset of ℝ definable in (ℜ,(S))...

On the Rockafellar theorem for Φ γ ( · , · ) -monotone multifunctions

S. Rolewicz (2006)

Studia Mathematica

Similarity:

Let X be an arbitrary set, and γ: X × X → ℝ any function. Let Φ be a family of real-valued functions defined on X. Let Γ : X 2 Φ be a cyclic Φ γ ( · , · ) -monotone multifunction with non-empty values. It is shown that the following generalization of the Rockafellar theorem holds. There is a function f: X → ℝ such that Γ is contained in the Φ γ ( · , · ) -subdifferential of f, Γ ( x ) Φ γ ( · , · ) f | x .

On some properties of three-dimensional minimal sets in 4

Tien Duc Luu (2013)

Annales de la faculté des sciences de Toulouse Mathématiques

Similarity:

We prove in this paper the Hölder regularity of Almgren minimal sets of dimension 3 in 4 around a 𝕐 -point and the existence of a point of particular type of a Mumford-Shah minimal set in 4 , which is very close to a 𝕋 . This will give a local description of minimal sets of dimension 3 in 4 around a singular point and a property of Mumford-Shah minimal sets in 4 .

Function spaces and local properties

Ziqin Feng, Paul Gartside (2013)

Fundamenta Mathematicae

Similarity:

Necessary conditions and sufficient conditions are given for C p ( X ) to be a (σ-) m₁- or m₃-space. (A space is an m₁-space if each of its points has a closure-preserving local base.) A compact uncountable space K is given with C p ( K ) an m₁-space, which answers questions raised by Dow, Ramírez Martínez and Tkachuk (2010) and Tkachuk (2011).

On ( n , m ) - A -normal and ( n , m ) - A -quasinormal semi-Hilbertian space operators

Samir Al Mohammady, Sid Ahmed Ould Beinane, Sid Ahmed Ould Ahmed Mahmoud (2022)

Mathematica Bohemica

Similarity:

The purpose of the paper is to introduce and study a new class of operators on semi-Hilbertian spaces, i.e. spaces generated by positive semi-definite sesquilinear forms. Let be a Hilbert space and let A be a positive bounded operator on . The semi-inner product h k A : = A h k , h , k , induces a semi-norm · A . This makes into a semi-Hilbertian space. An operator T A ( ) is said to be ( n , m ) - A -normal if [ T n , ( T A ) m ] : = T n ( T A ) m - ( T A ) m T n = 0 for some positive integers n and m .

Inverse eigenvalue problem of cell matrices

Sreyaun Khim, Kijti Rodtes (2019)

Czechoslovak Mathematical Journal

Similarity:

We consider the problem of reconstructing an n × n cell matrix D ( x ) constructed from a vector x = ( x 1 , x 2 , , x n ) of positive real numbers, from a given set of spectral data. In addition, we show that the spectra of cell matrices D ( x ) and D ( π ( x ) ) are the same for every permutation π S n .

A note on minimal zero-sum sequences over ℤ

Papa A. Sissokho (2014)

Acta Arithmetica

Similarity:

A zero-sum sequence over ℤ is a sequence with terms in ℤ that sum to 0. It is called minimal if it does not contain a proper zero-sum subsequence. Consider a minimal zero-sum sequence over ℤ with positive terms a , . . . , a h and negative terms b , . . . , b k . We prove that h ≤ ⌊σ⁺/k⌋ and k ≤ ⌊σ⁺/h⌋, where σ = i = 1 h a i = - j = 1 k b j . These bounds are tight and improve upon previous results. We also show a natural partial order structure on the collection of all minimal zero-sum sequences over the set i∈ ℤ : -n ≤ i ≤ n for any positive...

Some results on semi-stratifiable spaces

Wei-Feng Xuan, Yan-Kui Song (2019)

Mathematica Bohemica

Similarity:

We study relationships between separability with other properties in semi-stratifiable spaces. Especially, we prove the following statements: (1) If X is a semi-stratifiable space, then X is separable if and only if X is D C ( ω 1 ) ; (2) If X is a star countable extent semi-stratifiable space and has a dense metrizable subspace, then X is separable; (3) Let X be a ω -monolithic star countable extent semi-stratifiable space. If t ( X ) = ω and d ( X ) ω 1 , then X is hereditarily separable. Finally, we prove that for...

O-minimal fields with standard part map

Jana Maříková (2010)

Fundamenta Mathematicae

Similarity:

Let R be an o-minimal field and V a proper convex subring with residue field k and standard part (residue) map st: V → k. Let k i n d be the expansion of k by the standard parts of the definable relations in R. We investigate the definable sets in k i n d and conditions on (R,V) which imply o-minimality of k i n d . We also show that if R is ω-saturated and V is the convex hull of ℚ in R, then the sets definable in k i n d are exactly the standard parts of the sets definable in (R,V).

Extending piecewise polynomial functions in two variables

Andreas Fischer, Murray Marshall (2013)

Annales de la faculté des sciences de Toulouse Mathématiques

Similarity:

We study the extensibility of piecewise polynomial functions defined on closed subsets of 2 to all of 2 . The compact subsets of 2 on which every piecewise polynomial function is extensible to 2 can be characterized in terms of local quasi-convexity if they are definable in an o-minimal expansion of . Even the noncompact closed definable subsets can be characterized if semialgebraic function germs at infinity are dense in the Hardy field of definable germs. We also present a piecewise...

Specialization to the tangent cone and Whitney equisingularity

Arturo Giles Flores (2013)

Bulletin de la Société Mathématique de France

Similarity:

Let ( X , 0 ) be a reduced, equidimensional germ of an analytic singularity with reduced tangent cone ( C X , 0 , 0 ) . We prove that the absence of exceptional cones is a necessary and sufficient condition for the smooth part 𝔛 0 of the specialization to the tangent cone ϕ : 𝔛 to satisfy Whitney’s conditions along the parameter axis Y . This result is a first step in generalizing to higher dimensions Lê and Teissier’s result for hypersurfaces of 3 which establishes the Whitney equisingularity of X and its tangent...