Displaying similar documents to “Semi-classical standing waves for nonlinear Schrödinger equations at structurally stable critical points of the potential”

Critical points of the Moser-Trudinger functional on a disk

Andrea Malchiodi, Luca Martinazzi (2014)

Journal of the European Mathematical Society

Similarity:

On the unit disk B 1 2 we study the Moser-Trudinger functional E ( u ) = B 1 e u 2 - 1 d x , u H 0 1 ( B 1 ) and its restrictions E | M Λ , where M Λ : = { u H 0 1 ( B 1 ) : u H 0 1 2 = Λ } for Λ > 0 . We prove that if a sequence u k of positive critical points of E | M Λ k (for some Λ k > 0 ) blows up as k , then Λ k 4 π , and u k 0 weakly in H 0 1 ( B 1 ) and strongly in C loc 1 ( B ¯ 1 { 0 } ) . Using this fact we also prove that when Λ is large enough, then E | M Λ has no positive critical point, complementing previous existence results by Carleson-Chang, M. Struwe and Lamm-Robert-Struwe.

Recent results on stationary critical Kirchhoff systems in closed manifolds

Emmanuel Hebey, Pierre-Damien Thizy (2013-2014)

Séminaire Laurent Schwartz — EDP et applications

Similarity:

We report on results we recently obtained in Hebey and Thizy [11, 12] for critical stationary Kirchhoff systems in closed manifolds. Let ( M n , g ) be a closed n -manifold, n 3 . The critical Kirchhoff systems we consider are written as a + b j = 1 p M | u j | 2 d v g Δ g u i + j = 1 p A i j u j = U 2 - 2 u i for all i = 1 , , p , where Δ g is the Laplace-Beltrami operator, A is a C 1 -map from M into the space M s p ( ) of symmetric p × p matrices with real entries, the A i j ’s are the components of A , U = ( u 1 , , u p ) , | U | : M is the Euclidean norm of U , 2 = 2 n n - 2 is the critical Sobolev exponent, and...

Arbitrary number of positive solutions for an elliptic problem with critical nonlinearity

Olivier Rey, Juncheng Wei (2005)

Journal of the European Mathematical Society

Similarity:

We show that the critical nonlinear elliptic Neumann problem Δ u μ u + u 7 / 3 = 0 in Ω , u > 0 in Ω , u ν = 0 on Ω , where Ω is a bounded and smooth domain in 5 , has arbitrarily many solutions, provided that μ > 0 is small enough. More precisely, for any positive integer K , there exists μ K > 0 such that for 0 < μ < μ K , the above problem has a nontrivial solution which blows up at K interior points in Ω , as μ 0 . The location of the blow-up points is related to the domain geometry. The solutions are obtained as critical points of some finite-dimensional...

Location of the critical points of certain polynomials

Somjate Chaiya, Aimo Hinkkanen (2013)

Annales Universitatis Mariae Curie-Sklodowska, sectio A – Mathematica

Similarity:

Let 𝔻 denote the unit disk { z : | z | < 1 } in the complex plane . In this paper, we study a family of polynomials P with only one zero lying outside 𝔻 ¯ .  We establish  criteria for P to satisfy implying that each of P and P '   has exactly one critical point outside 𝔻 ¯ .

Finite-energy sign-changing solutions with dihedral symmetry for the stationary nonlinear Schrödinger equation

Monica Musso, Frank Pacard, Juncheng Wei (2012)

Journal of the European Mathematical Society

Similarity:

We address the problem of the existence of finite energy solitary waves for nonlinear Klein-Gordon or Schrödinger type equations Δ u - u + f ( u ) = 0 in N , u H 1 ( N ) , where N 2 . Under natural conditions on the nonlinearity f , we prove the existence of 𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑒𝑙𝑦𝑚𝑎𝑛𝑦𝑛𝑜𝑛𝑟𝑎𝑑𝑖𝑎𝑙𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠 in any dimension N 2 . Our result complements earlier works of Bartsch and Willem ( N = 4 𝚘𝚛 N 6 ) and Lorca-Ubilla ( N = 5 ) where solutions invariant under the action of O ( 2 ) × O ( N - 2 ) are constructed. In contrast, the solutions we construct are invariant under the action of D k × O ( N - 2 ) where D k O ( 2 ) denotes the dihedral...

Energy and Morse index of solutions of Yamabe type problems on thin annuli

Mohammed Ben Ayed, Khalil El Mehdi, Mohameden Ould Ahmedou, Filomena Pacella (2005)

Journal of the European Mathematical Society

Similarity:

We consider the Yamabe type family of problems ( P ε ) : Δ u ε = u ε ( n + 2 ) / ( n 2 ) , u ε > 0 in A ε , u ε = 0 on A ε , where A ε is an annulus-shaped domain of n , n 3 , which becomes thinner as ε 0 . We show that for every solution u ε , the energy A ε | u | 2 as well as the Morse index tend to infinity as ε 0 . This is proved through a fine blow up analysis of appropriate scalings of solutions whose limiting profiles are regular, as well as of singular solutions of some elliptic problem on n , a half-space or an infinite strip. Our argument also involves a Liouville...

Asymptotic properties of ground states of scalar field equations with a vanishing parameter

Vitaly Moroz, Cyrill B. Muratov (2014)

Journal of the European Mathematical Society

Similarity:

We study the leading order behaviour of positive solutions of the equation - Δ u + ϵ u - | u | p - 2 u + | u | q - 2 u = 0 , x N , where N 3 , q > p > 2 and when ϵ > 0 is a small parameter. We give a complete characterization of all possible asymptotic regimes as a function of p , q and N . The behavior of solutions depends sensitively on whether p is less, equal or bigger than the critical Sobolev exponent 2 * = 2 N N - 2 . For p < 2 * the solution asymptotically coincides with the solution of the equation in which the last term is absent. For p > 2 * the solution asymptotically...

Ground states of nonlinear Schrödinger equations with potentials vanishing at infinity

Antonio Ambrosetti, Veronica Felli, Andrea Malchiodi (2005)

Journal of the European Mathematical Society

Similarity:

We deal with a class on nonlinear Schrödinger equations (NLS) with potentials V ( x ) | x | α , 0 < α < 2 , and K ( x ) | x | β , β > 0 . Working in weighted Sobolev spaces, the existence of ground states v ε belonging to W 1 , 2 ( N ) is proved under the assumption that σ < p < ( N + 2 ) / ( N 2 ) for some σ = σ N , α , β . Furthermore, it is shown that v ε are spikes concentrating at a minimum point of 𝒜 = V θ K 2 / ( p 1 ) , where θ = ( p + 1 ) / ( p 1 ) 1 / 2 .

A compactness result for polyharmonic maps in the critical dimension

Shenzhou Zheng (2016)

Czechoslovak Mathematical Journal

Similarity:

For n = 2 m 4 , let Ω n be a bounded smooth domain and 𝒩 L a compact smooth Riemannian manifold without boundary. Suppose that { u k } W m , 2 ( Ω , 𝒩 ) is a sequence of weak solutions in the critical dimension to the perturbed m -polyharmonic maps d d t | t = 0 E m ( Π ( u + t ξ ) ) = 0 with Φ k 0 in ( W m , 2 ( Ω , 𝒩 ) ) * and u k u weakly in W m , 2 ( Ω , 𝒩 ) . Then u is an m -polyharmonic map. In particular, the space of m -polyharmonic maps is sequentially compact for the weak- W m , 2 topology.

Perturbed nonlinear degenerate problems in N

A. El Khalil, S. El Manouni, M. Ouanan (2009)

Applicationes Mathematicae

Similarity:

Via critical point theory we establish the existence and regularity of solutions for the quasilinear elliptic problem ⎧ d i v ( x , u ) + a ( x ) | u | p - 2 u = g ( x ) | u | p - 2 u + h ( x ) | u | s - 1 u in N ⎨ ⎩ u > 0, l i m | x | u ( x ) = 0 , where 1 < p < N; a(x) is assumed to satisfy a coercivity condition; h(x) and g(x) are not necessarily bounded but satisfy some integrability restrictions.

Fourth-order nonlinear elliptic equations with critical growth

David E. Edmunds, Donato Fortunato, Enrico Jannelli (1989)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti

Similarity:

In this paper we consider a nonlinear elliptic equation with critical growth for the operator Δ 2 in a bounded domain Ω n . We state some existence results when n 8 . Moreover, we consider 5 n 7 , expecially when Ω is a ball in n .

Almost sure well-posedness for the periodic 3D quintic nonlinear Schrödinger equation below the energy space

Andrea R. Nahmod, Gigliola Staffilani (2015)

Journal of the European Mathematical Society

Similarity:

We also prove a long time existence result; more precisely we prove that for fixed T > 0 there exists a set Σ T , ( Σ T ) > 0 such that any data φ ω ( x ) H γ ( 𝕋 3 ) , γ < 1 , ω Σ T , evolves up to time T into a solution u ( t ) with u ( t ) - e i t Δ φ ω C ( [ 0 , T ] ; H s ( 𝕋 3 ) ) , s = s ( γ ) > 1 . In particular we find a nontrivial set of data which gives rise to long time solutions below the critical space H 1 ( 𝕋 3 ) , that is in the supercritical scaling regime.

Bubbling along boundary geodesics near the second critical exponent

Manuel del Pino, Monica Musso, Frank Pacard (2010)

Journal of the European Mathematical Society

Similarity:

The role of the second critical exponent p = ( n + 1 ) / ( n - 3 ) , the Sobolev critical exponent in one dimension less, is investigated for the classical Lane–Emden–Fowler problem Δ u + u p = 0 , u > 0 under zero Dirichlet boundary conditions, in a domain Ω in n with bounded, smooth boundary. Given Γ , a geodesic of the boundary with negative inner normal curvature we find that for p = ( n + 1 ) / ( n - 3 - ε ) , there exists a solution u ε such that | u ε | 2 converges weakly to a Dirac measure on Γ as ε 0 + , provided that Γ is nondegenerate in the sense of second...

On critical values of twisted Artin L -functions

Peng-Jie Wong (2017)

Czechoslovak Mathematical Journal

Similarity:

We give a simple proof that critical values of any Artin L -function attached to a representation ρ with character χ ρ are stable under twisting by a totally even character χ , up to the dim ρ -th power of the Gauss sum related to χ and an element in the field generated by the values of χ ρ and χ over . This extends a result of Coates and Lichtenbaum as well as the previous work of Ward.

Unconditional uniqueness of higher order nonlinear Schrödinger equations

Friedrich Klaus, Peer Kunstmann, Nikolaos Pattakos (2021)

Czechoslovak Mathematical Journal

Similarity:

We show the existence of weak solutions in the extended sense of the Cauchy problem for the cubic fourth order nonlinear Schrödinger equation with the initial data u 0 X , where X { M 2 , q s ( ) , H σ ( 𝕋 ) , H s 1 ( ) + H s 2 ( 𝕋 ) } and q [ 1 , 2 ] , s 0 , or σ 0 , or s 2 s 1 0 . Moreover, if M 2 , q s ( ) L 3 ( ) , or if σ 1 6 , or if s 1 1 6 and s 2 > 1 2 we show that the Cauchy problem is unconditionally wellposed in X . Similar results hold true for all higher order nonlinear Schrödinger equations and mixed order NLS due to a factorization property of the corresponding phase factors. For the proof we employ...

A bifurcation theory for some nonlinear elliptic equations

Biagio Ricceri (2003)

Colloquium Mathematicae

Similarity:

We deal with the problem ⎧ -Δu = f(x,u) + λg(x,u), in Ω, ⎨ ( P λ ) ⎩ u Ω = 0 where Ω ⊂ ℝⁿ is a bounded domain, λ ∈ ℝ, and f,g: Ω×ℝ → ℝ are two Carathéodory functions with f(x,0) = g(x,0) = 0. Under suitable assumptions, we prove that there exists λ* > 0 such that, for each λ ∈ (0,λ*), problem ( P λ ) admits a non-zero, non-negative strong solution u λ p 2 W 2 , p ( Ω ) such that l i m λ 0 | | u λ | | W 2 , p ( Ω ) = 0 for all p ≥ 2. Moreover, the function λ I λ ( u λ ) is negative and decreasing in ]0,λ*[, where I λ is the energy functional related to ( P λ ). ...