Displaying similar documents to “Matrix coefficients, counting and primes for orbits of geometrically finite groups”

On the conjugate type vector and the structure of a normal subgroup

Ruifang Chen, Lujun Guo (2022)

Czechoslovak Mathematical Journal

Similarity:

Let N be a normal subgroup of a group G . The structure of N is given when the G -conjugacy class sizes of N is a set of a special kind. In fact, we give the structure of a normal subgroup N under the assumption that the set of G -conjugacy class sizes of N is ( p 1 n 1 a 1 n 1 , , p 1 1 a 11 , 1 ) × × ( p r n r a r n r , , p r 1 a r 1 , 1 ) , where r > 1 , n i > 1 and p i j are distinct primes for i { 1 , 2 , , r } , j { 1 , 2 , , n i } .

Computing the greatest 𝐗 -eigenvector of a matrix in max-min algebra

Ján Plavka (2016)

Kybernetika

Similarity:

A vector x is said to be an eigenvector of a square max-min matrix A if A x = x . An eigenvector x of A is called the greatest 𝐗 -eigenvector of A if x 𝐗 = { x ; x ̲ x x ¯ } and y x for each eigenvector y 𝐗 . A max-min matrix A is called strongly 𝐗 -robust if the orbit x , A x , A 2 x , reaches the greatest 𝐗 -eigenvector with any starting vector of 𝐗 . We suggest an O ( n 3 ) algorithm for computing the greatest 𝐗 -eigenvector of A and study the strong 𝐗 -robustness. The necessary and sufficient conditions for strong 𝐗 -robustness are introduced...

On linear preservers of two-sided gut-majorization on 𝐌 n , m

Asma Ilkhanizadeh Manesh, Ahmad Mohammadhasani (2018)

Czechoslovak Mathematical Journal

Similarity:

For X , Y 𝐌 n , m it is said that X is gut-majorized by Y , and we write X gut Y , if there exists an n -by- n upper triangular g-row stochastic matrix R such that X = R Y . Define the relation gut as follows. X gut Y if X is gut-majorized by Y and Y is gut-majorized by X . The (strong) linear preservers of gut on n and strong linear preservers of this relation on 𝐌 n , m have been characterized before. This paper characterizes all (strong) linear preservers and strong linear preservers of gut on n and 𝐌 n , m .

Selectors of discrete coarse spaces

Igor Protasov (2022)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Given a coarse space ( X , ) with the bornology of bounded subsets, we extend the coarse structure from X × X to the natural coarse structure on ( { } ) × ( { } ) and say that a macro-uniform mapping f : ( { } ) X (or f : [ X ] 2 X ) is a selector (or 2-selector) of ( X , ) if f ( A ) A for each A { } ( A [ X ] 2 , respectively). We prove that a discrete coarse space ( X , ) admits a selector if and only if ( X , ) admits a 2-selector if and only if there exists a linear order “ " on X such that the family of intervals { [ a , b ] : a , b X , a b } is a base for the bornology .

On σ -permutably embedded subgroups of finite groups

Chenchen Cao, Li Zhang, Wenbin Guo (2019)

Czechoslovak Mathematical Journal

Similarity:

Let σ = { σ i : i I } be some partition of the set of all primes , G be a finite group and σ ( G ) = { σ i : σ i π ( G ) } . A set of subgroups of G is said to be a complete Hall σ -set of G if every non-identity member of is a Hall σ i -subgroup of G and contains exactly one Hall σ i -subgroup of G for every σ i σ ( G ) . G is said to be σ -full if G possesses a complete Hall σ -set. A subgroup H of G is σ -permutable in G if G possesses a complete Hall σ -set such that H A x = A x H for all A and all x G . A subgroup H of G is σ -permutably embedded in...

( 0 , 1 ) -matrices, discrepancy and preservers

LeRoy B. Beasley (2019)

Czechoslovak Mathematical Journal

Similarity:

Let m and n be positive integers, and let R = ( r 1 , ... , r m ) and S = ( s 1 , ... , s n ) be nonnegative integral vectors. Let A ( R , S ) be the set of all m × n ( 0 , 1 ) -matrices with row sum vector R and column vector S . Let R and S be nonincreasing, and let F ( R ) be the m × n ( 0 , 1 ) -matrix, where for each i , the i th row of F ( R , S ) consists of r i 1’s followed by ( n - r i ) 0’s. Let A A ( R , S ) . The discrepancy of A, disc ( A ) , is the number of positions in which F ( R ) has a 1 and A has a 0. In this paper we investigate linear operators mapping m × n matrices over...

Perron-Frobenius operators and the Klein-Gordon equation

Francisco Canto-Martín, Håkan Hedenmalm, Alfonso Montes-Rodríguez (2014)

Journal of the European Mathematical Society

Similarity:

For a smooth curve Γ and a set Λ in the plane 2 , let A C ( Γ ; Λ ) be the space of finite Borel measures in the plane supported on Γ , absolutely continuous with respect to the arc length and whose Fourier transform vanishes on Λ . Following [12], we say that ( Γ , Λ ) is a Heisenberg uniqueness pair if A C ( Γ ; Λ ) = { 0 } . In the context of a hyperbola Γ , the study of Heisenberg uniqueness pairs is the same as looking for uniqueness sets Λ of a collection of solutions to the Klein-Gordon equation. In this work, we mainly...

Distance matrices perturbed by Laplacians

Balaji Ramamurthy, Ravindra Bhalchandra Bapat, Shivani Goel (2020)

Applications of Mathematics

Similarity:

Let T be a tree with n vertices. To each edge of T we assign a weight which is a positive definite matrix of some fixed order, say, s . Let D i j denote the sum of all the weights lying in the path connecting the vertices i and j of T . We now say that D i j is the distance between i and j . Define D : = [ D i j ] , where D i i is the s × s null matrix and for i j , D i j is the distance between i and j . Let G be an arbitrary connected weighted graph with n vertices, where each weight is a positive definite matrix of order...