Displaying similar documents to “Strichartz and smoothing estimates for Schrödinger operators with large magnetic potentials in 3

H p spaces associated with Schrödinger operators with potentials from reverse Hölder classes

Jacek Dziubański, Jacek Zienkiewicz (2003)

Colloquium Mathematicae

Similarity:

Let A = -Δ + V be a Schrödinger operator on d , d ≥ 3, where V is a nonnegative potential satisfying the reverse Hölder inequality with an exponent q > d/2. We say that f is an element of H A p if the maximal function s u p t > 0 | T t f ( x ) | belongs to L p ( d ) , where T t t > 0 is the semigroup generated by -A. It is proved that for d/(d+1) < p ≤ 1 the space H A p admits a special atomic decomposition.

Finite-energy sign-changing solutions with dihedral symmetry for the stationary nonlinear Schrödinger equation

Monica Musso, Frank Pacard, Juncheng Wei (2012)

Journal of the European Mathematical Society

Similarity:

We address the problem of the existence of finite energy solitary waves for nonlinear Klein-Gordon or Schrödinger type equations Δ u - u + f ( u ) = 0 in N , u H 1 ( N ) , where N 2 . Under natural conditions on the nonlinearity f , we prove the existence of 𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑒𝑙𝑦𝑚𝑎𝑛𝑦𝑛𝑜𝑛𝑟𝑎𝑑𝑖𝑎𝑙𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠 in any dimension N 2 . Our result complements earlier works of Bartsch and Willem ( N = 4 𝚘𝚛 N 6 ) and Lorca-Ubilla ( N = 5 ) where solutions invariant under the action of O ( 2 ) × O ( N - 2 ) are constructed. In contrast, the solutions we construct are invariant under the action of D k × O ( N - 2 ) where D k O ( 2 ) denotes the dihedral...

Unconditional uniqueness of higher order nonlinear Schrödinger equations

Friedrich Klaus, Peer Kunstmann, Nikolaos Pattakos (2021)

Czechoslovak Mathematical Journal

Similarity:

We show the existence of weak solutions in the extended sense of the Cauchy problem for the cubic fourth order nonlinear Schrödinger equation with the initial data u 0 X , where X { M 2 , q s ( ) , H σ ( 𝕋 ) , H s 1 ( ) + H s 2 ( 𝕋 ) } and q [ 1 , 2 ] , s 0 , or σ 0 , or s 2 s 1 0 . Moreover, if M 2 , q s ( ) L 3 ( ) , or if σ 1 6 , or if s 1 1 6 and s 2 > 1 2 we show that the Cauchy problem is unconditionally wellposed in X . Similar results hold true for all higher order nonlinear Schrödinger equations and mixed order NLS due to a factorization property of the corresponding phase factors. For the proof we employ...

A radial estimate for the maximal operator associated with the free Schrödinger equation

Sichun Wang (2006)

Studia Mathematica

Similarity:

Let d > 0 be a positive real number and n ≥ 1 a positive integer and define the operator S d and its associated global maximal operator S * * d by ( S d f ) ( x , t ) = 1 / ( 2 π ) e i x · ξ e i t | ξ | d f ̂ ( ξ ) d ξ , f ∈ (ℝⁿ), x ∈ ℝⁿ, t ∈ ℝ, ( S * * d f ) ( x ) = s u p t | 1 / ( 2 π ) e i x · ξ e i t | ξ | d f ̂ ( ξ ) d ξ | , f ∈ (ℝⁿ), x ∈ ℝⁿ, where f̂ is the Fourier transform of f and (ℝⁿ) is the Schwartz class of rapidly decreasing functions. If d = 2, S d f is the solution to the initial value problem for the free Schrödinger equation (cf. (1.3) in this paper). We prove that for radial functions f ∈ (ℝⁿ), if n ≥ 3, 0 < d ≤ 2, and p ≥...

Capacitary estimates of positive solutions of semilinear elliptic equations with absorbtion

Moshe Marcus, Laurent Véron (2004)

Journal of the European Mathematical Society

Similarity:

Let Ω be a bounded domain of class C 2 in N and let K be a compact subset of Ω . Assume that q ( N + 1 ) / ( N 1 ) and denote by U K the maximal solution of Δ u + u q = 0 in Ω which vanishes on Ω K . We obtain sharp upper and lower estimates for U K in terms of the Bessel capacity C 2 / q , q ' and prove that U K is σ -moderate. In addition we describe the precise asymptotic behavior of U K at points σ K , which depends on the “density” of K at σ , measured in terms of the capacity C 2 / q , q ' .

Some estimates for commutators of Riesz transform associated with Schrödinger type operators

Yu Liu, Jing Zhang, Jie-Lai Sheng, Li-Juan Wang (2016)

Czechoslovak Mathematical Journal

Similarity:

Let 1 = - Δ + V be a Schrödinger operator and let 2 = ( - Δ ) 2 + V 2 be a Schrödinger type operator on n ( n 5 ) , where V 0 is a nonnegative potential belonging to certain reverse Hölder class B s for s n / 2 . The Hardy type space H 2 1 is defined in terms of the maximal function with respect to the semigroup { e - t 2 } and it is identical to the Hardy space H 1 1 established by Dziubański and Zienkiewicz. In this article, we prove the L p -boundedness of the commutator b = b f - ( b f ) generated by the Riesz transform = 2 2 - 1 / 2 , where b BMO θ ( ρ ) , which is larger...

A priori bounds for positive radial solutions of quasilinear equations of Lane–Emden type

Soohyun Bae (2023)

Archivum Mathematicum

Similarity:

We consider the quasilinear equation Δ p u + K ( | x | ) u q = 0 , and present the proof of the local existence of positive radial solutions near 0 under suitable conditions on K . Moreover, we provide a priori estimates of positive radial solutions near when r - K ( r ) for - p is bounded near .

𝒞 k -regularity for the ¯ -equation with a support condition

Shaban Khidr, Osama Abdelkader (2017)

Czechoslovak Mathematical Journal

Similarity:

Let D be a 𝒞 d q -convex intersection, d 2 , 0 q n - 1 , in a complex manifold X of complex dimension n , n 2 , and let E be a holomorphic vector bundle of rank N over X . In this paper, 𝒞 k -estimates, k = 2 , 3 , , , for solutions to the ¯ -equation with small loss of smoothness are obtained for E -valued ( 0 , s ) -forms on D when n - q s n . In addition, we solve the ¯ -equation with a support condition in 𝒞 k -spaces. More precisely, we prove that for a ¯ -closed form f in 𝒞 0 , q k ( X D , E ) , 1 q n - 2 , n 3 , with compact support and for ε with 0 < ε < 1 there...

Stability and semiclassics in self-generated fields

László Erdős, Soren Fournais, Jan Philip Solovej (2013)

Journal of the European Mathematical Society

Similarity:

We consider non-interacting particles subject to a fixed external potential V and a self-generated magnetic field B . The total energy includes the field energy β B 2 and we minimize over all particle states and magnetic fields. In the case of spin-1/2 particles this minimization leads to the coupled Maxwell-Pauli system. The parameter β tunes the coupling strength between the field and the particles and it effectively determines the strength of the field. We investigate the stability and...

Admissible spaces for a first order differential equation with delayed argument

Nina A. Chernyavskaya, Lela S. Dorel, Leonid A. Shuster (2019)

Czechoslovak Mathematical Journal

Similarity:

We consider the equation - y ' ( x ) + q ( x ) y ( x - ϕ ( x ) ) = f ( x ) , x , where ϕ and q ( q 1 ) are positive continuous functions for all x and f C ( ) . By a solution of the equation we mean any function y , continuously differentiable everywhere in , which satisfies the equation for all x . We show that under certain additional conditions on the functions ϕ and q , the above equation has a unique solution y , satisfying the inequality y ' C ( ) + q y C ( ) c f C ( ) , where the constant c ( 0 , ) does not depend on the choice of f .

On the potential theory of some systems of coupled PDEs

Abderrahim Aslimani, Imad El Ghazi, Mohamed El Kadiri, Sabah Haddad (2016)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

In this paper we study some potential theoretical properties of solutions and super-solutions of some PDE systems (S) of type L 1 u = - μ 1 v , L 2 v = - μ 2 u , on a domain D of d , where μ 1 and μ 2 are suitable measures on D , and L 1 , L 2 are two second order linear differential elliptic operators on D with coefficients of class 𝒞 . We also obtain the integral representation of the nonnegative solutions and supersolutions of the system (S) by means of the Green kernels and Martin boundaries associated with L 1 and L 2 , and...

On Schrödinger maps from T 1 to  S 2

Robert L. Jerrard, Didier Smets (2012)

Annales scientifiques de l'École Normale Supérieure

Similarity:

We prove an estimate for the difference of two solutions of the Schrödinger map equation for maps from T 1 to  S 2 . This estimate yields some continuity properties of the flow map for the topology of  L 2 ( T 1 , S 2 ) , provided one takes its quotient by the continuous group action of  T 1 given by translations. We also prove that without taking this quotient, for any t &gt; 0 the flow map at time t is discontinuous as a map from 𝒞 ( T 1 , S 2 ) , equipped with the weak topology of  H 1 / 2 , to the space of distributions ( 𝒞 ( T 1 , 3 ) ) * . The argument relies...