Displaying similar documents to “A sharp isoperimetric inequality in the plane”

The Quantitative Isoperimetric Inequality for Planar Convex Domains

Carlo Nitsch (2008)

Bollettino dell'Unione Matematica Italiana

Similarity:

We prove that among all the convex bounded domains in 2 having an assigned Fraenkel asymmetry index, there exists only one convex set (up to a similarity) which minimizes the isoperimetric deficit. We show how to construct this set. The result can be read as a sharp improvement of the isoperimetric inequality for convex planar domains.

Poincaré Inequalities and Moment Maps

Bo’az Klartag (2013)

Annales de la faculté des sciences de Toulouse Mathématiques

Similarity:

We discuss a method for obtaining Poincaré-type inequalities on arbitrary convex bodies in n . Our technique involves a dual version of Bochner’s formula and a certain moment map, and it also applies to some non-convex sets. In particular, we generalize the central limit theorem for convex bodies to a class of non-convex domains, including the unit balls of p -spaces in n for 0 < p < 1 .

Generalized characterization of the convex envelope of a function

Fethi Kadhi (2002)

RAIRO - Operations Research - Recherche Opérationnelle

Similarity:

We investigate the minima of functionals of the form [ a , b ] g ( u ˙ ( s ) ) d s where g is strictly convex. The admissible functions u : [ a , b ] are not necessarily convex and satisfy u f on [ a , b ] , u ( a ) = f ( a ) , u ( b ) = f ( b ) , f is a fixed function on [ a , b ] . We show that the minimum is attained by f ¯ , the convex envelope of f .

The Young inequality and the Δ₂-condition

Philippe Laurençot (2002)

Colloquium Mathematicae

Similarity:

If φ: [0,∞) → [0,∞) is a convex function with φ(0) = 0 and conjugate function φ*, the inequality x y ε φ ( x ) + C ε φ * ( y ) is shown to hold true for every ε ∈ (0,∞) if and only if φ* satisfies the Δ₂-condition.

Convex integration with constraints and applications to phase transitions and partial differential equations

Stefan Müller, Vladimír Šverák (1999)

Journal of the European Mathematical Society

Similarity:

We study solutions of first order partial differential relations D u K , where u : Ω n m is a Lipschitz map and K is a bounded set in m × n matrices, and extend Gromov’s theory of convex integration in two ways. First, we allow for additional constraints on the minors of D u and second we replace Gromov’s P −convex hull by the (functional) rank-one convex hull. The latter can be much larger than the former and this has important consequences for the existence of ‘wild’ solutions to elliptic systems. Our...

Minimal multi-convex projections

Grzegorz Lewicki, Michael Prophet (2007)

Studia Mathematica

Similarity:

We say that a function from X = C L [ 0 , 1 ] is k-convex (for k ≤ L) if its kth derivative is nonnegative. Let P denote a projection from X onto V = Πₙ ⊂ X, where Πₙ denotes the space of algebraic polynomials of degree less than or equal to n. If we want P to leave invariant the cone of k-convex functions (k ≤ n), we find that such a demand is impossible to fulfill for nearly every k. Indeed, only for k = n-1 and k = n does such a projection exist. So let us consider instead a more general “shape”...

Circumradius versus side lengths of triangles in linear normed spaces

Gennadiy Averkov (2007)

Colloquium Mathematicae

Similarity:

Given a planar convex body B centered at the origin, we denote by ℳ ²(B) the Minkowski plane (i.e., two-dimensional linear normed space) with the unit ball B. For a triangle T in ℳ ²(B) we denote by R B ( T ) the least possible radius of a Minkowskian ball enclosing T. We remark that in the terminology of location science R B ( T ) is the optimum of the minimax location problem with distance induced by B and vertices of T as existing facilities (see, for instance, [HM03] and the references therein)....

On the ψ₂-behaviour of linear functionals on isotropic convex bodies

G. Paouris (2005)

Studia Mathematica

Similarity:

The slicing problem can be reduced to the study of isotropic convex bodies K with d i a m ( K ) c n L K , where L K is the isotropic constant. We study the ψ₂-behaviour of linear functionals on this class of bodies. It is proved that | | · , θ | | ψ C L K for all θ in a subset U of S n - 1 with measure σ(U) ≥ 1 - exp(-c√n). However, there exist isotropic convex bodies K with uniformly bounded geometric distance from the Euclidean ball, such that m a x θ S n - 1 | | · , θ | | ψ c n L K . In a different direction, we show that good average ψ₂-behaviour of linear functionals...

Smoothing a polyhedral convex function via cumulant transformation and homogenization

Alberto Seeger (1997)

Annales Polonici Mathematici

Similarity:

Given a polyhedral convex function g: ℝⁿ → ℝ ∪ +∞, it is always possible to construct a family g t > 0 which converges pointwise to g and such that each gₜ: ℝⁿ → ℝ is convex and infinitely often differentiable. The construction of such a family g t > 0 involves the concept of cumulant transformation and a standard homogenization procedure.

Countably convex G δ sets

Vladimir Fonf, Menachem Kojman (2001)

Fundamenta Mathematicae

Similarity:

We investigate countably convex G δ subsets of Banach spaces. A subset of a linear space is countably convex if it can be represented as a countable union of convex sets. A known sufficient condition for countable convexity of an arbitrary subset of a separable normed space is that it does not contain a semi-clique [9]. A semi-clique in a set S is a subset P ⊆ S so that for every x ∈ P and open neighborhood u of x there exists a finite set X ⊆ P ∩ u such that conv(X) ⊈ S. For closed sets...

Pairs of convex bodies in a hyperspace over a Minkowski two-dimensional space joined by a unique metric segment

Agnieszka Bogdewicz, Jerzy Grzybowski (2009)

Banach Center Publications

Similarity:

Let ( , | | · | | ) be a Minkowski space with a unit ball and let ϱ H be the Hausdorff metric induced by | | · | | in the hyperspace of convex bodies (nonempty, compact, convex subsets of ℝ). R. Schneider [RSP] characterized pairs of elements of which can be joined by unique metric segments with respect to ϱ H B for the Euclidean unit ball Bⁿ. We extend Schneider’s theorem to the hyperspace ( ² , ϱ H ) over any two-dimensional Minkowski space.

The Spaces of Closed Convex Sets in Euclidean Spaces with the Fell Topology

Katsuro Sakai, Zhongqiang Yang (2007)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

Let C o n v F ( ) be the space of all non-empty closed convex sets in Euclidean space ℝ ⁿ endowed with the Fell topology. We prove that C o n v F ( ) × Q for every n > 1 whereas C o n v F ( ) × .

Convexity of sublevel sets of plurisubharmonic extremal functions

Finnur Lárusson, Patrice Lassere, Ragnar Sigurdsson (1998)

Annales Polonici Mathematici

Similarity:

Let X be a convex domain in ℂⁿ and let E be a convex subset of X. The relative extremal function u E , X for E in X is the supremum of the class of plurisubharmonic functions v ≤ 0 on X with v ≤ -1 on E. We show that if E is either open or compact, then the sublevel sets of u E , X are convex. The proof uses the theory of envelopes of disc functionals and a new result on Blaschke products.

Convex universal fixers

Magdalena Lemańska, Rita Zuazua (2012)

Discussiones Mathematicae Graph Theory

Similarity:

In [1] Burger and Mynhardt introduced the idea of universal fixers. Let G = (V, E) be a graph with n vertices and G’ a copy of G. For a bijective function π: V(G) → V(G’), define the prism πG of G as follows: V(πG) = V(G) ∪ V(G’) and E ( π G ) = E ( G ) E ( G ' ) M π , where M π = u π ( u ) | u V ( G ) . Let γ(G) be the domination number of G. If γ(πG) = γ(G) for any bijective function π, then G is called a universal fixer. In [9] it is conjectured that the only universal fixers are the edgeless graphs K̅ₙ. In this work we generalize the concept...

On closed sets with convex projections in Hilbert space

Stoyu Barov, Jan J. Dijkstra (2007)

Fundamenta Mathematicae

Similarity:

Let k be a fixed natural number. We show that if C is a closed and nonconvex set in Hilbert space such that the closures of the projections onto all k-hyperplanes (planes with codimension k) are convex and proper, then C must contain a closed copy of Hilbert space. In order to prove this result we introduce for convex closed sets B the set k ( B ) consisting of all points of B that are extremal with respect to projections onto k-hyperplanes. We prove that k ( B ) is precisely the intersection of...

Geometry of numbers in adele spaces

R. B. McFeat

Similarity:

CONTENTSPart I1. Introduction...................................................................................................................................................... 52. Preliminaries.................................................................................................................................................. 62.1. Notation...........................................................................................................................................................