Displaying similar documents to “On the Stark-Shintani units and the ideal class groups in the cyclotomic p -extensions of class fields over real quadratic fields”

Exponent of class group of certain imaginary quadratic fields

Kalyan Chakraborty, Azizul Hoque (2020)

Czechoslovak Mathematical Journal

Similarity:

Let n > 1 be an odd integer. We prove that there are infinitely many imaginary quadratic fields of the form x 2 - 2 y n whose ideal class group has an element of order n . This family gives a counterexample to a conjecture by H. Wada (1970) on the structure of ideal class groups.

On p 2 -Ranks in the Class Field Tower Problem

Christian Maire, Cam McLeman (2014)

Annales mathématiques Blaise Pascal

Similarity:

Much recent progress in the 2-class field tower problem revolves around demonstrating infinite such towers for fields – in particular, quadratic fields – whose class groups have large 4-ranks. Generalizing to all primes, we use Golod-Safarevic-type inequalities to analyse the source of the p 2 -rank of the class group as a quantity of relevance in the p -class field tower problem. We also make significant partial progress toward demonstrating that all real quadratic number fields whose class...

Another look at real quadratic fields of relative class number 1

Debopam Chakraborty, Anupam Saikia (2014)

Acta Arithmetica

Similarity:

The relative class number H d ( f ) of a real quadratic field K = ℚ (√m) of discriminant d is defined to be the ratio of the class numbers of f and K , where K denotes the ring of integers of K and f is the order of conductor f given by + f K . R. Mollin has shown recently that almost all real quadratic fields have relative class number 1 for some conductor. In this paper we give a characterization of real quadratic fields with relative class number 1 through an elementary approach considering the...

Class groups of large ranks in biquadratic fields

Mahesh Kumar Ram (2024)

Czechoslovak Mathematical Journal

Similarity:

For any integer n > 1 , we provide a parametric family of biquadratic fields with class groups having n -rank at least 2. Moreover, in some cases, the n -rank is bigger than 4.

On the structure of the Galois group of the Abelian closure of a number field

Georges Gras (2014)

Journal de Théorie des Nombres de Bordeaux

Similarity:

From a paper by A. Angelakis and P. Stevenhagen on the determination of a family of imaginary quadratic fields K having isomorphic absolute Abelian Galois groups A K , we study any such issue for arbitrary number fields K . We show that this kind of property is probably not easily generalizable, apart from imaginary quadratic fields, because of some p -adic obstructions coming from the global units of K . By restriction to the p -Sylow subgroups of A K and assuming the Leopoldt conjecture we...

On the subfields of cyclotomic function fields

Zhengjun Zhao, Xia Wu (2013)

Czechoslovak Mathematical Journal

Similarity:

Let K = 𝔽 q ( T ) be the rational function field over a finite field of q elements. For any polynomial f ( T ) 𝔽 q [ T ] with positive degree, denote by Λ f the torsion points of the Carlitz module for the polynomial ring 𝔽 q [ T ] . In this short paper, we will determine an explicit formula for the analytic class number for the unique subfield M of the cyclotomic function field K ( Λ P ) of degree k over 𝔽 q ( T ) , where P 𝔽 q [ T ] is an irreducible polynomial of positive degree and k > 1 is a positive divisor of q - 1 . A formula for the analytic class...