Displaying similar documents to “Congruences of Ankeny-Artin-Chowla type and the p-adic class number formula revisited”

Non-abelian p -adic L -functions and Eisenstein series of unitary groups – The CM method

Thanasis Bouganis (2014)

Annales de l’institut Fourier

Similarity:

In this work we prove various cases of the so-called “torsion congruences” between abelian p -adic L -functions that are related to automorphic representations of definite unitary groups. These congruences play a central role in the non-commutative Iwasawa theory as it became clear in the works of Kakde, Ritter and Weiss on the non-abelian Main Conjecture for the Tate motive. We tackle these congruences for a general definite unitary group of n variables and we obtain more explicit results...

The spt-crank for overpartitions

Frank G. Garvan, Chris Jennings-Shaffer (2014)

Acta Arithmetica

Similarity:

Bringmann, Lovejoy, and Osburn (2009, 2010) showed that the generating functions of the spt-overpartition functions s p t ¯ ( n ) , s p t ¯ 1 ( n ) , s p t ¯ 2 ( n ) , and M2spt(n) are quasimock theta functions, and satisfy a number of simple Ramanujan-like congruences. Andrews, Garvan, and Liang (2012) defined an spt-crank in terms of weighted vector partitions which combinatorially explain simple congruences modulo 5 and 7 for spt(n). Chen, Ji, and Zang (2013) were able to define this spt-crank in terms of ordinary partitions....

Congruences for certain families of Apéry-like sequences

Zhi-Hong Sun (2022)

Czechoslovak Mathematical Journal

Similarity:

We systematically investigate the expressions and congruences for both a one-parameter family { G n ( x ) } as well as a two-parameter family { G n ( r , m ) } of sequences.

Heights and totally p-adic numbers

Lukas Pottmeyer (2015)

Acta Arithmetica

Similarity:

We study the behavior of canonical height functions h ̂ f , associated to rational maps f, on totally p-adic fields. In particular, we prove that there is a gap between zero and the next smallest value of h ̂ f on the maximal totally p-adic field if the map f has at least one periodic point not contained in this field. As an application we prove that there is no infinite subset X in the compositum of all number fields of degree at most d such that f(X) = X for some non-linear polynomial f. This...

Polynomial analogues of Ramanujan congruences for Han's hooklength formula

William J. Keith (2013)

Acta Arithmetica

Similarity:

This article considers the eta power ( 1 - q k ) b - 1 . It is proved that the coefficients of q n / n ! in this expression, as polynomials in b, exhibit equidistribution of the coefficients in the nonzero residue classes mod 5 when n = 5j+4. Other symmetries, as well as symmetries for other primes and prime powers, are proved, and some open questions are raised.

On the heights of totally p -adic numbers

Paul Fili (2014)

Journal de Théorie des Nombres de Bordeaux

Similarity:

Bombieri and Zannier established lower and upper bounds for the limit infimum of the Weil height in fields of totally p -adic numbers and generalizations thereof. In this paper, we use potential theoretic techniques to generalize the upper bounds from their paper and, under the assumption of integrality, to improve slightly upon their bounds.

Some new infinite families of congruences modulo 3 for overpartitions into odd parts

Ernest X. W. Xia (2016)

Colloquium Mathematicae

Similarity:

Let p ̅ o ( n ) denote the number of overpartitions of n in which only odd parts are used. Some congruences modulo 3 and powers of 2 for the function p ̅ o ( n ) have been derived by Hirschhorn and Sellers, and Lovejoy and Osburn. In this paper, employing 2-dissections of certain quotients of theta functions due to Ramanujan, we prove some new infinite families of Ramanujan-type congruences for p ̅ o ( n ) modulo 3. For example, we prove that for n, α ≥ 0, p ̅ o ( 4 α ( 24 n + 17 ) ) p ̅ o ( 4 α ( 24 n + 23 ) ) 0 ( m o d 3 ) .

New infinite families of Ramanujan-type congruences modulo 9 for overpartition pairs

Ernest X. W. Xia (2015)

Colloquium Mathematicae

Similarity:

Let p p ¯ ( n ) denote the number of overpartition pairs of n. Bringmann and Lovejoy (2008) proved that for n ≥ 0, p p ¯ ( 3 n + 2 ) 0 ( m o d 3 ) . They also proved that there are infinitely many Ramanujan-type congruences modulo every power of odd primes for p p ¯ ( n ) . Recently, Chen and Lin (2012) established some Ramanujan-type identities and explicit congruences for p p ¯ ( n ) . Furthermore, they also constructed infinite families of congruences for p p ¯ ( n ) modulo 3 and 5, and two congruence relations modulo 9. In this paper, we prove several...

Some congruences involving binomial coefficients

Hui-Qin Cao, Zhi-Wei Sun (2015)

Colloquium Mathematicae

Similarity:

Binomial coefficients and central trinomial coefficients play important roles in combinatorics. Let p > 3 be a prime. We show that T p - 1 ( p / 3 ) 3 p - 1 ( m o d p ² ) , where the central trinomial coefficient Tₙ is the constant term in the expansion of ( 1 + x + x - 1 ) . We also prove three congruences modulo p³ conjectured by Sun, one of which is k = 0 p - 1 p - 1 k 2 k k ( ( - 1 ) k - ( - 3 ) - k ) ( p / 3 ) ( 3 p - 1 - 1 ) ( m o d p ³ ) . In addition, we get some new combinatorial identities.

On Alternatives of Polynomial Congruences

Mariusz Skałba (2004)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

What should be assumed about the integral polynomials f ( x ) , . . . , f k ( x ) in order that the solvability of the congruence f ( x ) f ( x ) f k ( x ) 0 ( m o d p ) for sufficiently large primes p implies the solvability of the equation f ( x ) f ( x ) f k ( x ) = 0 in integers x? We provide some explicit characterizations for the cases when f j ( x ) are binomials or have cyclic splitting fields.

On the quasi-periodic p -adic Ruban continued fractions

Basma Ammous, Nour Ben Mahmoud, Mohamed Hbaib (2022)

Czechoslovak Mathematical Journal

Similarity:

We study a family of quasi periodic p -adic Ruban continued fractions in the p -adic field p and we give a criterion of a quadratic or transcendental p -adic number which based on the p -adic version of the subspace theorem due to Schlickewei.

The geometry of non-unit Pisot substitutions

Milton Minervino, Jörg Thuswaldner (2014)

Annales de l’institut Fourier

Similarity:

It is known that with a non-unit Pisot substitution σ one can associate certain fractal tiles, so-called Rauzy fractals. In our setting, these fractals are subsets of a certain open subring of the adèle ring of the associated Pisot number field. We present several approaches on how to define Rauzy fractals and discuss the relations between them. In particular, we consider Rauzy fractals as the natural geometric objects of certain numeration systems, in terms of the dual of the one-dimensional...

On the lattice of congruences on inverse semirings

Anwesha Bhuniya, Anjan Kumar Bhuniya (2008)

Discussiones Mathematicae - General Algebra and Applications

Similarity:

Let S be a semiring whose additive reduct (S,+) is an inverse semigroup. The relations θ and k, induced by tr and ker (resp.), are congruences on the lattice C(S) of all congruences on S. For ρ ∈ C(S), we have introduced four congruences ρ m i n , ρ m a x , ρ m i n and ρ m a x on S and showed that ρ θ = [ ρ m i n , ρ m a x ] and ρ κ = [ ρ m i n , ρ m a x ] . Different properties of ρθ and ρκ have been considered here. A congruence ρ on S is a Clifford congruence if and only if ρ m a x is a distributive lattice congruence and ρ m a x is a skew-ring congruence on S. If η (σ) is the...

On p -adic Euler constants

Abhishek Bharadwaj (2021)

Czechoslovak Mathematical Journal

Similarity:

The goal of this article is to associate a p -adic analytic function to the Euler constants γ p ( a , F ) , study the properties of these functions in the neighborhood of s = 1 and introduce a p -adic analogue of the infinite sum n 1 f ( n ) / n for an algebraic valued, periodic function f . After this, we prove the theorem of Baker, Birch and Wirsing in this setup and discuss irrationality results associated to p -adic Euler constants generalising the earlier known results in this direction. Finally, we define and prove...

The Heyde theorem on a-adic solenoids

Margaryta Myronyuk (2013)

Colloquium Mathematicae

Similarity:

We prove the following analogue of the Heyde theorem for a-adic solenoids. Let ξ₁, ξ₂ be independent random variables with values in an a-adic solenoid Σ a and with distributions μ₁, μ₂. Let α j , β j be topological automorphisms of Σ a such that β α - 1 ± β α - 1 are topological automorphisms of Σ a too. Assuming that the conditional distribution of the linear form L₂ = β₁ξ₁ + β₂ξ₂ given L₁ = α₁ξ₁ + α₂ξ₂ is symmetric, we describe the possible distributions μ₁, μ₂.