Displaying similar documents to “Asymptotic nature of higher Mahler measure”

On the r -free values of the polynomial x 2 + y 2 + z 2 + k

Gongrui Chen, Wenxiao Wang (2023)

Czechoslovak Mathematical Journal

Similarity:

Let k be a fixed integer. We study the asymptotic formula of R ( H , r , k ) , which is the number of positive integer solutions 1 x , y , z H such that the polynomial x 2 + y 2 + z 2 + k is r -free. We obtained the asymptotic formula of R ( H , r , k ) for all r 2 . Our result is new even in the case r = 2 . We proved that R ( H , 2 , k ) = c k H 3 + O ( H 9 / 4 + ε ) , where c k > 0 is a constant depending on k . This improves upon the error term O ( H 7 / 3 + ε ) obtained by G.-L. Zhou, Y. Ding (2022).

Approximation properties of β-expansions

Simon Baker (2015)

Acta Arithmetica

Similarity:

Let β ∈ (1,2) and x ∈ [0,1/(β-1)]. We call a sequence ( ϵ i ) i = 1 0 , 1 a β-expansion for x if x = i = 1 ϵ i β - i . We call a finite sequence ( ϵ i ) i = 1 n 0 , 1 n an n-prefix for x if it can be extended to form a β-expansion of x. In this paper we study how good an approximation is provided by the set of n-prefixes. Given Ψ : 0 , we introduce the following subset of ℝ: W β ( Ψ ) : = m = 1 n = m ( ϵ i ) i = 1 n 0 , 1 n [ i = 1 n ( ϵ i ) / ( β i ) , i = 1 n ( ϵ i ) / ( β i ) + Ψ ( n ) ] In other words, W β ( Ψ ) is the set of x ∈ ℝ for which there exist infinitely many solutions to the inequalities 0 x - i = 1 n ( ϵ i ) / ( β i ) Ψ ( n ) . When n = 1 2 n Ψ ( n ) < , the Borel-Cantelli lemma tells us that the Lebesgue measure...

Characteristic points, rectifiability and perimeter measure on stratified groups

Valentino Magnani (2006)

Journal of the European Mathematical Society

Similarity:

We establish an explicit connection between the perimeter measure of an open set E with C 1 boundary and the spherical Hausdorff measure S Q 1 restricted to E , when the ambient space is a stratified group endowed with a left invariant sub-Riemannian metric and Q denotes the Hausdorff dimension of the group. Our formula implies that the perimeter measure of E is less than or equal to S Q 1 ( E ) up to a dimensional factor. The validity of this estimate positively answers a conjecture raised by Danielli,...

Measure-geometric Laplacians for partially atomic measures

Marc Kesseböhmer, Tony Samuel, Hendrik Weyer (2020)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Motivated by the fundamental theorem of calculus, and based on the works of W. Feller as well as M. Kac and M. G. Kreĭn, given an atomless Borel probability measure η supported on a compact subset of U. Freiberg and M. Zähle introduced a measure-geometric approach to define a first order differential operator η and a second order differential operator Δ η , with respect to η . We generalize this approach to measures of the form η : = ν + δ , where ν is non-atomic and δ is finitely supported. We determine...

Generalized Lebesgue points for Sobolev functions

Nijjwal Karak (2017)

Czechoslovak Mathematical Journal

Similarity:

In many recent articles, medians have been used as a replacement of integral averages when the function fails to be locally integrable. A point x in a metric measure space ( X , d , μ ) is called a generalized Lebesgue point of a measurable function f if the medians of f over the balls B ( x , r ) converge to f ( x ) when r converges to 0 . We know that almost every point of a measurable, almost everywhere finite function is a generalized Lebesgue point and the same is true for every point of a continuous function....

Convolution operators with anisotropically homogeneous measures on 2 n with n-dimensional support

E. Ferreyra, T. Godoy, M. Urciuolo (2002)

Colloquium Mathematicae

Similarity:

Let α i , β i > 0 , 1 ≤ i ≤ n, and for t > 0 and x = (x₁,...,xₙ) ∈ ℝⁿ, let t x = ( t α x , . . . , t α x ) , t x = ( t β x , . . . , t β x ) and | | x | | = i = 1 n | x i | 1 / α i . Let φ₁,...,φₙ be real functions in C ( - 0 ) such that φ = (φ₁,..., φₙ) satisfies φ(t • x) = t ∘ φ(x). Let γ > 0 and let μ be the Borel measure on 2 n given by μ ( E ) = χ E ( x , φ ( x ) ) | | x | | γ - α d x , where α = i = 1 n α i and dx denotes the Lebesgue measure on ℝⁿ. Let T μ f = μ f and let | | T μ | | p , q be the operator norm of T μ from L p ( 2 n ) into L q ( 2 n ) , where the L p spaces are taken with respect to the Lebesgue measure. The type set E μ is defined by E μ = ( 1 / p , 1 / q ) : | | T μ | | p , q < , 1 p , q . In the case α i β k for 1 ≤ i,k ≤ n we characterize the...

Manin’s and Peyre’s conjectures on rational points and adelic mixing

Alex Gorodnik, François Maucourant, Hee Oh (2008)

Annales scientifiques de l'École Normale Supérieure

Similarity:

Let X be the wonderful compactification of a connected adjoint semisimple group G defined over a number field K . We prove Manin’s conjecture on the asymptotic (as T ) of the number of K -rational points of X of height less than T , and give an explicit construction of a measure on X ( 𝔸 ) , generalizing Peyre’s measure, which describes the asymptotic distribution of the rational points 𝐆 ( K ) on X ( 𝔸 ) . Our approach is based on the mixing property of L 2 ( 𝐆 ( K ) 𝐆 ( 𝔸 ) ) which we obtain with a rate of convergence. ...

Maximal upper asymptotic density of sets of integers with missing differences from a given set

Ram Krishna Pandey (2015)

Mathematica Bohemica

Similarity:

Let M be a given nonempty set of positive integers and S any set of nonnegative integers. Let δ ¯ ( S ) denote the upper asymptotic density of S . We consider the problem of finding μ ( M ) : = sup S δ ¯ ( S ) , where the supremum is taken over all sets S satisfying that for each a , b S , a - b M . In this paper we discuss the values and bounds of μ ( M ) where M = { a , b , a + n b } for all even integers and for all sufficiently large odd integers n with a < b and gcd ( a , b ) = 1 .

On the characterization of harmonic functions with initial data in Morrey space

Bo Li, Jinxia Li, Bolin Ma, Tianjun Shen (2024)

Czechoslovak Mathematical Journal

Similarity:

Let ( X , d , μ ) be a metric measure space satisfying the doubling condition and an L 2 -Poincaré inequality. Consider the nonnegative operator generalized by a Dirichlet form on X . We will show that a solution u to ( - t 2 + ) u = 0 on X × + satisfies an α -Carleson condition if and only if u can be represented as the Poisson integral of the operator with the trace in the generalized Morrey space L 2 , α ( X ) , where α is a nonnegative function defined on a class of balls in X . This result extends the analogous characterization...

Existence and asymptotic behavior of positive solutions for elliptic systems with nonstandard growth conditions

Honghui Yin, Zuodong Yang (2012)

Annales Polonici Mathematici

Similarity:

Our main purpose is to establish the existence of a positive solution of the system ⎧ - p ( x ) u = F ( x , u , v ) , x ∈ Ω, ⎨ - q ( x ) v = H ( x , u , v ) , x ∈ Ω, ⎩u = v = 0, x ∈ ∂Ω, where Ω N is a bounded domain with C² boundary, F ( x , u , v ) = λ p ( x ) [ g ( x ) a ( u ) + f ( v ) ] , H ( x , u , v ) = λ q ( x ) [ g ( x ) b ( v ) + h ( u ) ] , λ > 0 is a parameter, p(x),q(x) are functions which satisfy some conditions, and - p ( x ) u = - d i v ( | u | p ( x ) - 2 u ) is called the p(x)-Laplacian. We give existence results and consider the asymptotic behavior of solutions near the boundary. We do not assume any symmetry conditions on the system.

Complete monotonicity of the remainder in an asymptotic series related to the psi function

Zhen-Hang Yang, Jing-Feng Tian (2024)

Czechoslovak Mathematical Journal

Similarity:

Let p , q with p - q 0 , σ = 1 2 ( p + q - 1 ) and s = 1 2 ( 1 - p + q ) , and let 𝒟 m ( x ; p , q ) = 𝒟 0 ( x ; p , q ) + k = 1 m B 2 k ( s ) 2 k ( x + σ ) 2 k , where 𝒟 0 ( x ; p , q ) = ψ ( x + p ) + ψ ( x + q ) 2 - ln ( x + σ ) . We establish the asymptotic expansion 𝒟 0 ( x ; p , q ) - n = 1 B 2 n ( s ) 2 n ( x + σ ) 2 n as x , where B 2 n ( s ) stands for the Bernoulli polynomials. Further, we prove that the functions ( - 1 ) m 𝒟 m ( x ; p , q ) and ( - 1 ) m + 1 𝒟 m ( x ; p , q ) are completely monotonic in x on ( - σ , ) for every m 0 if and only if p - q [ 0 , 1 2 ] and p - q = 1 , respectively. This not only unifies the two known results but also yields some new results.

Invariant densities for random β -expansions

Karma Dajani, Martijn de Vries (2007)

Journal of the European Mathematical Society

Similarity:

Let β > 1 be a non-integer. We consider expansions of the form i = 1 d i / β i , where the digits ( d i ) i 1 are generated by means of a Borel map K β defined on { 0 , 1 } × [ 0 , β ( β 1 ) ] . We show existence and uniqueness of a K β -invariant probability measure, absolutely continuous with respect to m p λ , where m p is the Bernoulli measure on { 0 , 1 } with parameter p ( 0 < p < 1 ) and λ is the normalized Lebesgue measure on [ 0 , β ( β 1 ) ] . Furthermore, this measure is of the form m p μ β , p , where μ β , p is equivalent to λ . We prove that the measure of maximal entropy and m p λ are mutually...