Displaying similar documents to “On the existence of positive solutions of second order neutral difference equations”

Oscillation theorems for third order nonlinear delay difference equations

Kumar S. Vidhyaa, Chinnappa Dharuman, Ethiraju Thandapani, Sandra Pinelas (2019)

Mathematica Bohemica

Similarity:

Sufficient conditions are obtained for the third order nonlinear delay difference equation of the form Δ ( a n ( Δ ( b n ( Δ y n ) α ) ) ) + q n f ( y σ ( n ) ) = 0 to have property ( A ) or to be oscillatory. These conditions improve and complement many known results reported in the literature. Examples are provided to illustrate the importance of the main results.

Necessary and sufficient conditions for oscillations of delay partial difference equations

Bing Gen Zhang, Shu Tang Liu (1995)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

Similarity:

This paper is concerned with the delay partial difference equation (1) A m + 1 , n + A m , n + 1 - A m , n + Σ i = 1 u p i A m - k i , n - l i = 0 where p i are real numbers, k i and l i are nonnegative integers, u is a positive integer. Sufficient and necessary conditions for all solutions of (1) to be oscillatory are obtained.

Existence of nonoscillatory solutions to third order neutral type difference equations with delay and advanced arguments

Srinivasan Selvarangam, Sethurajan A. Rupadevi, Ethiraju Thandapani, Sandra Pinelas (2021)

Mathematica Bohemica

Similarity:

In this paper, we present several sufficient conditions for the existence of nonoscillatory solutions to the following third order neutral type difference equation Δ 3 ( x n + a n x n - l + b n x n + m ) + p n x n - k - q n x n + r = 0 , n n 0 via Banach contraction principle. Examples are provided to illustrate the main results. The results obtained in this paper extend and complement some of the existing results.

Asymptotic behaviour of solutions of third order nonlinear difference equations of neutral type

Anna Andruch-Sobiło, Andrzej Drozdowicz (2008)

Mathematica Bohemica

Similarity:

In the paper we consider the difference equation of neutral type Δ 3 [ x ( n ) - p ( n ) x ( σ ( n ) ) ] + q ( n ) f ( x ( τ ( n ) ) ) = 0 , n ( n 0 ) , where p , q : ( n 0 ) + ; σ , τ : , σ is strictly increasing and lim n σ ( n ) = ; τ is nondecreasing and lim n τ ( n ) = , f : , x f ( x ) > 0 . We examine the following two cases: 0 < p ( n ) λ * < 1 , σ ( n ) = n - k , τ ( n ) = n - l , and 1 < λ * p ( n ) , σ ( n ) = n + k , τ ( n ) = n + l , where k , l are positive integers. We obtain sufficient conditions under which all nonoscillatory solutions of the above equation tend to zero as n with a weaker assumption on q than the usual assumption i = n 0 q ( i ) = that is used in literature.

Oscillation criteria for third order nonlinear delay dynamic equations on time scales

Zhenlai Han, Tongxing Li, Shurong Sun, Fengjuan Cao (2010)

Annales Polonici Mathematici

Similarity:

By means of Riccati transformation technique, we establish some new oscillation criteria for third-order nonlinear delay dynamic equations ( ( x Δ Δ ( t ) ) γ ) Δ + p ( t ) x γ ( τ ( t ) ) = 0 on a time scale ; here γ > 0 is a quotient of odd positive integers and p a real-valued positive rd-continuous function defined on . Our results not only extend and improve the results of T. S. Hassan [Math. Comput. Modelling 49 (2009)] but also unify the results on oscillation of third-order delay differential equations and third-order delay...

Oscillatory properties of third-order semi-noncanonical nonlinear delay difference equations

Govindasamy Ayyappan, George E. Chatzarakis, Thaniarasu Kumar, Ethiraj Thandapani (2023)

Mathematica Bohemica

Similarity:

We study the oscillatory properties of the solutions of the third-order nonlinear semi-noncanonical delay difference equation D 3 y ( n ) + f ( n ) y β ( σ ( n ) ) = 0 , where D 3 y ( n ) = Δ ( b ( n ) Δ ( a ( n ) ( Δ y ( n ) ) α ) ) is studied. The main idea is to transform the semi-noncanonical operator into canonical form. Then we obtain new oscillation theorems for the studied equation. Examples are provided to illustrate the importance of the main results.

Delay-dependent stability conditions for fundamental characteristic functions

Hideaki Matsunaga (2023)

Archivum Mathematicum

Similarity:

This paper is devoted to the investigation on the stability for two characteristic functions f 1 ( z ) = z 2 + p e - z τ + q and f 2 ( z ) = z 2 + p z e - z τ + q , where p and q are real numbers and τ > 0 . The obtained theorems describe the explicit stability dependence on the changing delay τ . Our results are applied to some special cases of a linear differential system with delay in the diagonal terms and delay-dependent stability conditions are obtained.

Necessary and sufficient conditions for oscillation of second-order differential equations with nonpositive neutral coefficients

Arun K. Tripathy, Shyam S. Santra (2021)

Mathematica Bohemica

Similarity:

In this work, we present necessary and sufficient conditions for oscillation of all solutions of a second-order functional differential equation of type ( r ( t ) ( z ' ( t ) ) γ ) ' + i = 1 m q i ( t ) x α i ( σ i ( t ) ) = 0 , t t 0 , where z ( t ) = x ( t ) + p ( t ) x ( τ ( t ) ) . Under the assumption ( r ( η ) ) - 1 / γ d η = , we consider two cases when γ > α i and γ < α i . Our main tool is Lebesgue’s dominated convergence theorem. Finally, we provide examples illustrating our results and state an open problem.