The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Making sense of capitulation: reciprocal primes”

Wild primes of a self-equivalence of a number field

Alfred Czogała, Beata Rothkegel (2014)

Acta Arithmetica

Similarity:

Let K be a number field. Assume that the 2-rank of the ideal class group of K is equal to the 2-rank of the narrow ideal class group of K. Moreover, assume K has a unique dyadic prime and the class of is a square in the ideal class group of K. We prove that if ₁,...,ₙ are finite primes of K such that ∙ the class of i is a square in the ideal class group of K for every i ∈ 1,...,n, ∙ -1 is a local square at i for every nondyadic i , . . . , , then ₁,...,ₙ is the wild set of some self-equivalence...

On a divisibility problem

Shichun Yang, Florian Luca, Alain Togbé (2019)

Mathematica Bohemica

Similarity:

Let p 1 , p 2 , be the sequence of all primes in ascending order. Using explicit estimates from the prime number theory, we show that if k 5 , then ( p k + 1 - 1 ) ! ( 1 2 ( p k + 1 - 1 ) ) ! p k ! , which improves a previous result of the second author.

E 1 -degeneration and d ' d ' ' -lemma

Tai-Wei Chen, Chung-I Ho, Jyh-Haur Teh (2016)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

For a double complex ( A , d ' , d ' ' ) , we show that if it satisfies the d ' d ' ' -lemma and the spectral sequence { E r p , q } induced by A does not degenerate at E 0 , then it degenerates at E 1 . We apply this result to prove the degeneration at E 1 of a Hodge-de Rham spectral sequence on compact bi-generalized Hermitian manifolds that satisfy a version of d ' d ' ' -lemma.

Eigenspaces of the ideal class group

Cornelius Greither, Radan Kučera (2014)

Annales de l’institut Fourier

Similarity:

The aim of this paper is to prove an analog of Gras’ conjecture for an abelian field F and an odd prime p dividing the degree [ F : ] assuming that the p -part of Gal ( F / ) group is cyclic.

Boundedness criteria for a class of second order nonlinear differential equations with delay

Daniel O. Adams, Mathew Omonigho Omeike, Idowu A. Osinuga, Biodun S. Badmus (2023)

Mathematica Bohemica

Similarity:

We consider certain class of second order nonlinear nonautonomous delay differential equations of the form a ( t ) x ' ' + b ( t ) g ( x , x ' ) + c ( t ) h ( x ( t - r ) ) m ( x ' ) = p ( t , x , x ' ) and ( a ( t ) x ' ) ' + b ( t ) g ( x , x ' ) + c ( t ) h ( x ( t - r ) ) m ( x ' ) = p ( t , x , x ' ) , where a , b , c , g , h , m and p are real valued functions which depend at most on the arguments displayed explicitly and r is a positive constant. Different forms of the integral inequality method were used to investigate the boundedness of all solutions and their derivatives. Here, we do not require construction of the Lyapunov-Krasovski functional to establish our results....

C(X) vs. C(X) modulo its socle

F. Azarpanah, O. A. S. Karamzadeh, S. Rahmati (2008)

Colloquium Mathematicae

Similarity:

Let C F ( X ) be the socle of C(X). It is shown that each prime ideal in C ( X ) / C F ( X ) is essential. For each h ∈ C(X), we prove that every prime ideal (resp. z-ideal) of C(X)/(h) is essential if and only if the set Z(h) of zeros of h contains no isolated points (resp. int Z(h) = ∅). It is proved that d i m ( C ( X ) / C F ( X ) ) d i m C ( X ) , where dim C(X) denotes the Goldie dimension of C(X), and the inequality may be strict. We also give an algebraic characterization of compact spaces with at most a countable number of nonisolated points....

A compactness result in thin-film micromagnetics and the optimality of the Néel wall

Radu Ignat, Felix Otto (2008)

Journal of the European Mathematical Society

Similarity:

In this paper, we study a model for the magnetization in thin ferromagnetic films. It comes as a variational problem for S 1 -valued maps m ' (the magnetization) of two variables x ' : E ε ( m ' ) = ε | ' · m ' | 2 d x ' + 1 2 | ' | - 1 / 2 ' · m ' 2 d x ' . We are interested in the behavior of minimizers as ε 0 . They are expected to be S 1 -valued maps m ' of vanishing distributional divergence ' · m ' = 0 , so that appropriate boundary conditions enforce line discontinuities. For finite ε > 0 , these line discontinuities are approximated by smooth transition layers, the so-called Néel...

Elementary operators on Banach algebras and Fourier transform

Miloš Arsenović, Dragoljub Kečkić (2006)

Studia Mathematica

Similarity:

We consider elementary operators x j = 1 n a j x b j , acting on a unital Banach algebra, where a j and b j are separately commuting families of generalized scalar elements. We give an ascent estimate and a lower bound estimate for such an operator. Additionally, we give a weak variant of the Fuglede-Putnam theorem for an elementary operator with strongly commuting families a j and b j , i.e. a j = a j ' + i a j ' ' ( b j = b j ' + i b j ' ' ), where all a j ' and a j ' ' ( b j ' and b j ' ' ) commute. The main tool is an L¹ estimate of the Fourier transform of a certain class...

On the ring of p -integers of a cyclic p -extension over a number field

Humio Ichimura (2005)

Journal de Théorie des Nombres de Bordeaux

Similarity:

Let p be a prime number. A finite Galois extension N / F of a number field F with group G has a normal p -integral basis ( p -NIB for short) when 𝒪 N is free of rank one over the group ring 𝒪 F [ G ] . Here, 𝒪 F = 𝒪 F [ 1 / p ] is the ring of p -integers of F . Let m = p e be a power of p and N / F a cyclic extension of degree m . When ζ m F × , we give a necessary and sufficient condition for N / F to have a p -NIB (Theorem 3). When ζ m F × and p [ F ( ζ m ) : F ] , we show that N / F has a p -NIB if and only if N ( ζ m ) / F ( ζ m ) has a p -NIB (Theorem 1). When p divides [ F ( ζ m ) : F ] , we show that this...

Duality of matrix-weighted Besov spaces

Svetlana Roudenko (2004)

Studia Mathematica

Similarity:

We determine the duals of the homogeneous matrix-weighted Besov spaces p α q ( W ) and p α q ( W ) which were previously defined in [5]. If W is a matrix A p weight, then the dual of p α q ( W ) can be identified with p ' - α q ' ( W - p ' / p ) and, similarly, [ p α q ( W ) ] * p ' - α q ' ( W - p ' / p ) . Moreover, for certain W which may not be in the A p class, the duals of p α q ( W ) and p α q ( W ) are determined and expressed in terms of the Besov spaces p ' - α q ' ( A Q - 1 ) and p ' - α q ' ( A Q - 1 ) , which we define in terms of reducing operators A Q Q associated with W. We also develop the basic theory of these reducing operator Besov spaces....

Bigraphic pairs with a realization containing a split bipartite-graph

Jian Hua Yin, Jia-Yun Li, Jin-Zhi Du, Hai-Yan Li (2019)

Czechoslovak Mathematical Journal

Similarity:

Let K s , t be the complete bipartite graph with partite sets { x 1 , ... , x s } and { y 1 , ... , y t } . A split bipartite-graph on ( s + s ' ) + ( t + t ' ) vertices, denoted by SB s + s ' , t + t ' , is the graph obtained from K s , t by adding s ' + t ' new vertices x s + 1 , ... , x s + s ' , y t + 1 , ... , y t + t ' such that each of x s + 1 , ... , x s + s ' is adjacent to each of y 1 , ... , y t and each of y t + 1 , ... , y t + t ' is adjacent to each of x 1 , ... , x s . Let A and B be nonincreasing lists of nonnegative integers, having lengths m and n , respectively. The pair ( A ; B ) is potentially SB s + s ' , t + t ' -bigraphic if there is a simple bipartite graph containing SB s + s ' , t + t ' (with s + s ' vertices x 1 , ... , x s + s ' in the part of size m ...

Convolution theorems for starlike and convex functions in the unit disc

M. Anbudurai, R. Parvatham, S. Ponnusamy, V. Singh (2004)

Annales Polonici Mathematici

Similarity:

Let A denote the space of all analytic functions in the unit disc Δ with the normalization f(0) = f’(0) − 1 = 0. For β < 1, let P β = f A : R e f ' ( z ) > β , z Δ . For λ > 0, suppose that denotes any one of the following classes of functions: M 1 , λ ( 1 ) = f : R e z ( z f ' ( z ) ) ' ' > - λ , z Δ , M 1 , λ ( 2 ) = f : R e z ( z ² f ' ' ( z ) ) ' ' > - λ , z Δ , M 1 , λ ( 3 ) = f : R e 1 / 2 ( z ( z ² f ' ( z ) ) ' ' ) ' - 1 > - λ , z Δ . The main purpose of this paper is to find conditions on λ and γ so that each f ∈ is in γ or γ , γ ∈ [0,1/2]. Here γ and γ respectively denote the class of all starlike functions of order γ and the class of all convex functions of order γ. As a consequence, we obtain...

On hyperbolic partial differential equations in Banach spaces

Bogdan Rzepecki (1986)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti

Similarity:

Viene dimostrata l'esistenza di soluzioni del problema di Darboux per l'equazione iperbolica z x y ′′ = f ( x , y , z , Z x , z y ) sul planiquarto x 0 , y 0 . Qui, f è una funzione continua, con valori in uno spazio Banach che soddisfano alcune condizioni di regolarità espresse in termini della misura di non-compattezza α .

Existence of solutions for a coupled system with φ -Laplacian operators and nonlinear coupled boundary conditions

Konan Charles Etienne Goli, Assohoun Adjé (2017)

Communications in Mathematics

Similarity:

We study the existence of solutions of the system ( φ 1 ( u 1 ' ( t ) ) ) ' = f 1 ( t , u 1 ( t ) , u 2 ( t ) , u 1 ' ( t ) , u 2 ' ( t ) ) , a.e. t [ 0 , T ] , ( φ 2 ( u 2 ' ( t ) ) ) ' = f 2 ( t , u 1 ( t ) , u 2 ( t ) , u 1 ' ( t ) , u 2 ' ( t ) ) , a.e. t [ 0 , T ] , submitted to nonlinear coupled boundary conditions on [ 0 , T ] where φ 1 , φ 2 : ( - a , a ) , with 0 < a < + , are two increasing homeomorphisms such that φ 1 ( 0 ) = φ 2 ( 0 ) = 0 , and f i : [ 0 , T ] × 4 , i { 1 , 2 } are two L 1 -Carathéodory functions. Using some new conditions and Schauder fixed point Theorem, we obtain solvability result.