Displaying similar documents to “Rational solutions of certain Diophantine equations involving norms”

On the irreducible factors of a polynomial over a valued field

Anuj Jakhar (2024)

Czechoslovak Mathematical Journal

Similarity:

We explicitly provide numbers d , e such that each irreducible factor of a polynomial f ( x ) with integer coefficients has a degree greater than or equal to d and f ( x ) can have at most e irreducible factors over the field of rational numbers. Moreover, we prove our result in a more general setup for polynomials with coefficients from the valuation ring of an arbitrary valued field.

Composite rational functions expressible with few terms

Clemens Fuchs, Umberto Zannier (2012)

Journal of the European Mathematical Society

Similarity:

We consider a rational function f which is ‘lacunary’ in the sense that it can be expressed as the ratio of two polynomials (not necessarily coprime) having each at most a given number of terms. Then we look at the possible decompositions f ( x ) = g ( h ( x ) ) , where g , h are rational functions of degree larger than 1. We prove that, apart from certain exceptional cases which we completely describe, the degree of g is bounded only in terms of (and we provide explicit bounds). This supports and quantifies...

Heights of squares of Littlewood polynomials and infinite series

Artūras Dubickas (2012)

Annales Polonici Mathematici

Similarity:

Let P be a unimodular polynomial of degree d-1. Then the height H(P²) of its square is at least √(d/2) and the product L(P²)H(P²), where L denotes the length of a polynomial, is at least d². We show that for any ε > 0 and any d ≥ d(ε) there exists a polynomial P with ±1 coefficients of degree d-1 such that H(P²) < (2+ε)√(dlogd) and L(P²)H(P²)< (16/3+ε)d²log d. A similar result is obtained for the series with ±1 coefficients. Let A m be the mth coefficient of the square f(x)² of...

On the value set of small families of polynomials over a finite field, II

Guillermo Matera, Mariana Pérez, Melina Privitelli (2014)

Acta Arithmetica

Similarity:

We obtain an estimate on the average cardinality (d,s,a) of the value set of any family of monic polynomials in q [ T ] of degree d for which s consecutive coefficients a = ( a d - 1 , . . . , a d - s ) are fixed. Our estimate asserts that ( d , s , a ) = μ d q + ( q 1 / 2 ) , where μ d : = r = 1 d ( ( - 1 ) r - 1 ) / ( r ! ) . We also prove that ( d , s , a ) = μ ² d q ² + ( q 3 / 2 ) , where ₂(d,s,a) is the average second moment of the value set cardinalities for any family of monic polynomials of q [ T ] of degree d with s consecutive coefficients fixed as above. Finally, we show that ( d , 0 ) = μ ² d q ² + ( q ) , where ₂(d,0) denotes the average second moment for...

Explicit bounds for the Łojasiewicz exponent in the gradient inequality for polynomials

Didier D&amp;#039;Acunto, Krzysztof Kurdyka (2005)

Annales Polonici Mathematici

Similarity:

Let f: ℝⁿ → ℝ be a polynomial function of degree d with f(0) = 0 and ∇f(0) = 0. Łojasiewicz’s gradient inequality states that there exist C > 0 and ϱ ∈ (0,1) such that | f | C | f | ϱ in a neighbourhood of the origin. We prove that the smallest such exponent ϱ is not greater than 1 - R ( n , d ) - 1 with R ( n , d ) = d ( 3 d - 3 ) n - 1 .

Polynomials with values which are powers of integers

Rachid Boumahdi, Jesse Larone (2018)

Archivum Mathematicum

Similarity:

Let P be a polynomial with integral coefficients. Shapiro showed that if the values of P at infinitely many blocks of consecutive integers are of the form Q ( m ) , where Q is a polynomial with integral coefficients, then P ( x ) = Q ( R ( x ) ) for some polynomial R . In this paper, we show that if the values of P at finitely many blocks of consecutive integers, each greater than a provided bound, are of the form m q where q is an integer greater than 1, then P ( x ) = ( R ( x ) ) q for some polynomial R ( x ) .

On the distribution of the roots of polynomial z k - z k - 1 - - z - 1

Carlos A. Gómez, Florian Luca (2021)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We consider the polynomial f k ( z ) = z k - z k - 1 - - z - 1 for k 2 which arises as the characteristic polynomial of the k -generalized Fibonacci sequence. In this short paper, we give estimates for the absolute values of the roots of f k ( z ) which lie inside the unit disk.

A class of irreducible polynomials

Joshua Harrington, Lenny Jones (2013)

Colloquium Mathematicae

Similarity:

Let f ( x ) = x + k n - 1 x n - 1 + k n - 2 x n - 2 + + k x + k [ x ] , where 3 k n - 1 k n - 2 k k 2 k n - 1 - 3 . We show that f(x) and f(x²) are irreducible over ℚ. Moreover, the upper bound of 2 k n - 1 - 3 on the coefficients of f(x) is the best possible in this situation.

Sum of squares and the Łojasiewicz exponent at infinity

Krzysztof Kurdyka, Beata Osińska-Ulrych, Grzegorz Skalski, Stanisław Spodzieja (2014)

Annales Polonici Mathematici

Similarity:

Let V ⊂ ℝⁿ, n ≥ 2, be an unbounded algebraic set defined by a system of polynomial equations h ( x ) = = h r ( x ) = 0 and let f: ℝⁿ→ ℝ be a polynomial. It is known that if f is positive on V then f | V extends to a positive polynomial on the ambient space ℝⁿ, provided V is a variety. We give a constructive proof of this fact for an arbitrary algebraic set V. Precisely, if f is positive on V then there exists a polynomial h ( x ) = i = 1 r h ² i ( x ) σ i ( x ) , where σ i are sums of squares of polynomials of degree at most p, such that f(x) + h(x) >...

The algebra of polynomials on the space of ultradifferentiable functions

Katarzyna Grasela (2010)

Banach Center Publications

Similarity:

We consider the space of ultradifferentiable functions with compact supports and the space of polynomials on . A description of the space ( ) of polynomial ultradistributions as a locally convex direct sum is given.

On the Gauss-Lucas'lemma in positive characteristic

Umberto Bartocci, Maria Cristina Vipera (1988)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti

Similarity:

If f ( x ) is a polynomial with coefficients in the field of complex numbers, of positive degree n , then f ( x ) has at least one root a with the following property: if μ k n , where μ is the multiplicity of α , then f ( k ) ( α ) 0 (such a root is said to be a "free" root of f ( x ) ). This is a consequence of the so-called Gauss-Lucas'lemma. One could conjecture that this property remains true for polynomials (of degree n ) with coefficients in a field of positive characteristic p > n (Sudbery's Conjecture). In this paper it...

The factorization of f ( x ) x n + g ( x ) with f ( x ) monic and of degree 2 .

Joshua Harrington, Andrew Vincent, Daniel White (2013)

Journal de Théorie des Nombres de Bordeaux

Similarity:

In this paper we investigate the factorization of the polynomials f ( x ) x n + g ( x ) [ x ] in the special case where f ( x ) is a monic quadratic polynomial with negative discriminant. We also mention similar results in the case that f ( x ) is monic and linear.

On a generalization of the Beiter Conjecture

Bartłomiej Bzdęga (2016)

Acta Arithmetica

Similarity:

We prove that for every ε > 0 and every nonnegative integer w there exist primes p 1 , . . . , p w such that for n = p 1 . . . p w the height of the cyclotomic polynomial Φ n is at least ( 1 - ε ) c w M n , where M n = i = 1 w - 2 p i 2 w - 1 - i - 1 and c w is a constant depending only on w; furthermore l i m w c w 2 - w 0 . 71 . In our construction we can have p i > h ( p 1 . . . p i - 1 ) for all i = 1,...,w and any function h: ℝ₊ → ℝ₊.

Polynomial Imaginary Decompositions for Finite Separable Extensions

Adam Grygiel (2008)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

Let K be a field and let L = K[ξ] be a finite field extension of K of degree m > 1. If f ∈ L[Z] is a polynomial, then there exist unique polynomials u , . . . , u m - 1 K [ X , . . . , X m - 1 ] such that f ( j = 0 m - 1 ξ j X j ) = j = 0 m - 1 ξ j u j . A. Nowicki and S. Spodzieja proved that, if K is a field of characteristic zero and f ≠ 0, then u , . . . , u m - 1 have no common divisor in K [ X , . . . , X m - 1 ] of positive degree. We extend this result to the case when L is a separable extension of a field K of arbitrary characteristic. We also show that the same is true for a formal power series in several...

Coppersmith-Rivlin type inequalities and the order of vanishing of polynomials at 1

(2016)

Acta Arithmetica

Similarity:

For n ∈ ℕ, L > 0, and p ≥ 1 let κ p ( n , L ) be the largest possible value of k for which there is a polynomial P ≢ 0 of the form P ( x ) = j = 0 n a j x j , | a 0 | L ( j = 1 n | a j | p ) 1 / p , a j , such that ( x - 1 ) k divides P(x). For n ∈ ℕ, L > 0, and q ≥ 1 let μ q ( n , L ) be the smallest value of k for which there is a polynomial Q of degree k with complex coefficients such that | Q ( 0 ) | > 1 / L ( j = 1 n | Q ( j ) | q ) 1 / q . We find the size of κ p ( n , L ) and μ q ( n , L ) for all n ∈ ℕ, L > 0, and 1 ≤ p,q ≤ ∞. The result about μ ( n , L ) is due to Coppersmith and Rivlin, but our proof is completely different and much shorter even...

Manin’s and Peyre’s conjectures on rational points and adelic mixing

Alex Gorodnik, François Maucourant, Hee Oh (2008)

Annales scientifiques de l'École Normale Supérieure

Similarity:

Let X be the wonderful compactification of a connected adjoint semisimple group G defined over a number field K . We prove Manin’s conjecture on the asymptotic (as T ) of the number of K -rational points of X of height less than T , and give an explicit construction of a measure on X ( 𝔸 ) , generalizing Peyre’s measure, which describes the asymptotic distribution of the rational points 𝐆 ( K ) on X ( 𝔸 ) . Our approach is based on the mixing property of L 2 ( 𝐆 ( K ) 𝐆 ( 𝔸 ) ) which we obtain with a rate of convergence. ...

Beyond two criteria for supersingularity: coefficients of division polynomials

Christophe Debry (2014)

Journal de Théorie des Nombres de Bordeaux

Similarity:

Let f ( x ) be a cubic, monic and separable polynomial over a field of characteristic p 3 and let E be the elliptic curve given by y 2 = f ( x ) . In this paper we prove that the coefficient at x 1 2 p ( p - 1 ) in the p –th division polynomial of E equals the coefficient at x p - 1 in f ( x ) 1 2 ( p - 1 ) . For elliptic curves over a finite field of characteristic p , the first coefficient is zero if and only if E is supersingular, which by a classical criterion of Deuring (1941) is also equivalent to the vanishing of the second coefficient. So the...

A variety of Euler's sum of powers conjecture

Tianxin Cai, Yong Zhang (2021)

Czechoslovak Mathematical Journal

Similarity:

We consider a variety of Euler’s sum of powers conjecture, i.e., whether the Diophantine system n = a 1 + a 2 + + a s - 1 , a 1 a 2 a s - 1 ( a 1 + a 2 + + a s - 1 ) = b s has positive integer or rational solutions n , b , a i , i = 1 , 2 , , s - 1 , s 3 . Using the theory of elliptic curves, we prove that it has no positive integer solution for s = 3 , but there are infinitely many positive integers n such that it has a positive integer solution for s 4 . As a corollary, for s 4 and any positive integer n , the above Diophantine system has a positive rational solution. Meanwhile, we give conditions...

On the Gauss-Lucas'lemma in positive characteristic

Umberto Bartocci, Maria Cristina Vipera (1988)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Similarity:

If f ( x ) is a polynomial with coefficients in the field of complex numbers, of positive degree n , then f ( x ) has at least one root a with the following property: if μ k n , where μ is the multiplicity of α , then f ( k ) ( α ) 0 (such a root is said to be a "free" root of f ( x ) ). This is a consequence of the so-called Gauss-Lucas'lemma. One could conjecture that this property remains true for polynomials (of degree n ) with coefficients in a field of positive characteristic p > n (Sudbery's Conjecture). In this paper it...