Displaying similar documents to “Multiplicative functions dictated by Artin symbols”

Counting discriminants of number fields

Henri Cohen, Francisco Diaz y Diaz, Michel Olivier (2006)

Journal de Théorie des Nombres de Bordeaux

Similarity:

For each transitive permutation group G on n letters with n 4 , we give without proof results, conjectures, and numerical computations on discriminants of number fields L of degree n over such that the Galois group of the Galois closure of L is isomorphic to G .

On the k -polygonal numbers and the mean value of Dedekind sums

Jing Guo, Xiaoxue Li (2016)

Czechoslovak Mathematical Journal

Similarity:

For any positive integer k 3 , it is easy to prove that the k -polygonal numbers are a n ( k ) = ( 2 n + n ( n - 1 ) ( k - 2 ) ) / 2 . The main purpose of this paper is, using the properties of Gauss sums and Dedekind sums, the mean square value theorem of Dirichlet L -functions and the analytic methods, to study the computational problem of one kind mean value of Dedekind sums S ( a n ( k ) a ¯ m ( k ) , p ) for k -polygonal numbers with 1 m , n p - 1 , and give an interesting computational formula for it.

Random Galois extensions of Hilbertian fields

Lior Bary-Soroker, Arno Fehm (2013)

Journal de Théorie des Nombres de Bordeaux

Similarity:

Let L be a Galois extension of a countable Hilbertian field K . Although L need not be Hilbertian, we prove that an abundance of large Galois subextensions of L / K are.

Arithmetic Properties of Generalized Rikuna Polynomials

Z. Chonoles, J. Cullinan, H. Hausman, A.M. Pacelli, S. Pegado, F. Wei (2014)

Publications mathématiques de Besançon

Similarity:

Fix an integer 3 . Rikuna introduced a polynomial r ( x , t ) defined over a function field K ( t ) whose Galois group is cyclic of order , where K satisfies some mild hypotheses. In this paper we define the family of { r n ( x , t ) } n 1 of degree n . The r n ( x , t ) are constructed iteratively from the r ( x , t ) . We compute the Galois groups of the r n ( x , t ) for odd over an arbitrary base field and give applications to arithmetic dynamical systems.

Divisors in global analytic sets

Francesca Acquistapace, A. Díaz-Cano (2011)

Journal of the European Mathematical Society

Similarity:

We prove that any divisor Y of a global analytic set X n has a generic equation, that is, there is an analytic function vanishing on Y with multiplicity one along each irreducible component of Y . We also prove that there are functions with arbitrary multiplicities along Y . The main result states that if X is pure dimensional, Y is locally principal, X / Y is not connected and Y represents the zero class in H q - 1 ( X , 2 ) then the divisor Y is globally principal.

On certain subclasses of analytic functions associated with the Carlson–Shaffer operator

Jagannath Patel, Ashok Kumar Sahoo (2014)

Annales Universitatis Mariae Curie-Sklodowska, sectio A – Mathematica

Similarity:

The object of the present paper is to solve Fekete-Szego problem and determine the sharp upper bound to the second Hankel determinant for a certain class R λ ( a , c , A , B ) of analytic functions in the unit disk. We also investigate several majorization properties for functions belonging to a subclass R ˜ λ ( a , c , A , B ) of R λ ( a , c , A , B ) and related function classes. Relevant connections of the main results obtained here with those given by earlier workers on the subject are pointed out.

Proof of a conjectured three-valued family of Weil sums of binomials

Daniel J. Katz, Philippe Langevin (2015)

Acta Arithmetica

Similarity:

We consider Weil sums of binomials of the form W F , d ( a ) = x F ψ ( x d - a x ) , where F is a finite field, ψ: F → ℂ is the canonical additive character, g c d ( d , | F × | ) = 1 , and a F × . If we fix F and d, and examine the values of W F , d ( a ) as a runs through F × , we always obtain at least three distinct values unless d is degenerate (a power of the characteristic of F modulo | F × | ). Choices of F and d for which we obtain only three values are quite rare and desirable in a wide variety of applications. We show that if F is a field of order 3ⁿ with n...

On generalized square-full numbers in an arithmetic progression

Angkana Sripayap, Pattira Ruengsinsub, Teerapat Srichan (2022)

Czechoslovak Mathematical Journal

Similarity:

Let a and b . Denote by R a , b the set of all integers n > 1 whose canonical prime representation n = p 1 α 1 p 2 α 2 p r α r has all exponents α i ( 1 i r ) being a multiple of a or belonging to the arithmetic progression a t + b , t 0 : = { 0 } . All integers in R a , b are called generalized square-full integers. Using the exponent pair method, an upper bound for character sums over generalized square-full integers is derived. An application on the distribution of generalized square-full integers in an arithmetic progression is given. ...