Displaying similar documents to “Morrey regularity and continuity results for almost minimizers of asymptotically convex integrals”

On the global regularity of N -dimensional generalized Boussinesq system

Kazuo Yamazaki (2015)

Applications of Mathematics

Similarity:

We study the N -dimensional Boussinesq system with dissipation and diffusion generalized in terms of fractional Laplacians. In particular, we show that given the critical dissipation, a solution pair remains smooth for all time even with zero diffusivity. In the supercritical case, we obtain component reduction results of regularity criteria and smallness conditions for the global regularity in dimensions two and three.

Regularity for minimizers of non-autonomous non-quadratic functionals in the case 1 < p < 2 : an a priori estimate

Andrea Gentile (2018)

Rendiconto dell’Accademia delle Scienze Fisiche e Matematiche

Similarity:

We establish an a priori estimate for the second derivatives of local minimizers of integral functionals of the form ( ν , Ω ) = Ω f ( x , D ν ( x ) ) 𝑑 x with convex integrand with respect to the gradient variable, assuming that the function that measures the oscillation of the integrand with respect to the x variable belongs to a suitable Sobolev space. The novelty here is that we deal with integrands satisfying subquadratic growth conditions with respect to gradient variable.

C 1 , α regularity for elliptic equations with the general nonstandard growth conditions

Sungchol Kim, Dukman Ri (2024)

Mathematica Bohemica

Similarity:

We study elliptic equations with the general nonstandard growth conditions involving Lebesgue measurable functions on Ω . We prove the global C 1 , α regularity of bounded weak solutions of these equations with the Dirichlet boundary condition. Our results generalize the C 1 , α regularity results for the elliptic equations in divergence form not only in the variable exponent case but also in the constant exponent case.

Pointwise regularity associated with function spaces and multifractal analysis

Stéphane Jaffard (2006)

Banach Center Publications

Similarity:

The purpose of multifractal analysis of functions is to determine the Hausdorff dimensions of the sets of points where a function (or a distribution) f has a given pointwise regularity exponent H. This notion has many variants depending on the global hypotheses made on f; if f locally belongs to a Banach space E, then a family of pointwise regularity spaces C E α ( x ) are constructed, leading to a notion of pointwise regularity with respect to E; the case E = L corresponds to the usual Hölder regularity,...

On weak minima of certain integral functionals

Gioconda Moscariello (1998)

Annales Polonici Mathematici

Similarity:

We prove a regularity result for weak minima of integral functionals of the form Ω F ( x , D u ) d x where F(x,ξ) is a Carathéodory function which grows as | ξ | p with some p > 1.

Regularity of Lipschitz free boundaries for the thin one-phase problem

Daniela De Silva, Ovidiu Savin (2015)

Journal of the European Mathematical Society

Similarity:

We study regularity properties of the free boundary for the thin one-phase problem which consists of minimizing the energy functional E ( u , Ω ) = Ω | u | 2 d X + n ( { u > 0 } { x n + 1 = 0 } ) , Ω n + 1 , among all functions u 0 which are fixed on Ω .

Time regularity and functions of the Volterra operator

Zoltán Léka (2014)

Studia Mathematica

Similarity:

Our aim is to prove that for any fixed 1/2 < α < 1 there exists a Hilbert space contraction T such that σ(T) = 1 and | | T n + 1 - T | | ( n 1 ) . This answers Zemánek’s question on the time regularity property.

Differentiation of n-convex functions

H. Fejzić, R. E. Svetic, C. E. Weil (2010)

Fundamenta Mathematicae

Similarity:

The main result of this paper is that if f is n-convex on a measurable subset E of ℝ, then f is n-2 times differentiable, n-2 times Peano differentiable and the corresponding derivatives are equal, and f ( n - 1 ) = f ( n - 1 ) except on a countable set. Moreover f ( n - 1 ) is approximately differentiable with approximate derivative equal to the nth approximate Peano derivative of f almost everywhere.

Estimates with global range for oscillatory integrals with concave phase

Bjorn Gabriel Walther (2002)

Colloquium Mathematicae

Similarity:

We consider the maximal function | | ( S a f ) [ x ] | | L [ - 1 , 1 ] where ( S a f ) ( t ) ( ξ ) = e i t | ξ | a f ̂ ( ξ ) and 0 < a < 1. We prove the global estimate | | S a f | | L ² ( , L [ - 1 , 1 ] ) C | | f | | H s ( ) , s > a/4, with C independent of f. This is known to be almost sharp with respect to the Sobolev regularity s.

A characterization of almost continuity and weak continuity

Chrisostomos Petalas, Theodoros Vidalis (2004)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

Similarity:

It is well known that a function f from a space X into a space Y is continuous if and only if, for every set K in X the image of the closure of K under f is a subset of the closure of the image of it. In this paper we characterize almost continuity and weak continuity by proving similar relations for the subsets K of X .

A regularity criterion for the 2D MHD and viscoelastic fluid equations

Zhuan Ye (2015)

Annales Polonici Mathematici

Similarity:

This paper is dedicated to a regularity criterion for the 2D MHD equations and viscoelastic equations. We prove that if the magnetic field B, respectively the local deformation gradient F, satisfies B , F L q ( 0 , T ; L p ( ² ) ) for 1/p + 1/q = 1 and 2 < p ≤ ∞, then the corresponding local solution can be extended beyond time T.

Partial Boundary Regularity of Solutions of Nonlinear Superelliptic Systems

Christoph Hamburger (2007)

Bollettino dell'Unione Matematica Italiana

Similarity:

We prove global partial regularity of weaksolutions of the Dirichlet problem for the nonlinear superelliptic system div A ( x , u , D u ) + B ( x , u , D U ) = 0 , under natural polynomial growth of the coefficient functions A and B . We employ the indirect method of the bilinear form and do not use a Caccioppoli or a reverse Hölder inequality.

Convex integration with constraints and applications to phase transitions and partial differential equations

Stefan Müller, Vladimír Šverák (1999)

Journal of the European Mathematical Society

Similarity:

We study solutions of first order partial differential relations D u K , where u : Ω n m is a Lipschitz map and K is a bounded set in m × n matrices, and extend Gromov’s theory of convex integration in two ways. First, we allow for additional constraints on the minors of D u and second we replace Gromov’s P −convex hull by the (functional) rank-one convex hull. The latter can be much larger than the former and this has important consequences for the existence of ‘wild’ solutions to elliptic systems. Our...