Displaying similar documents to “Logarithmic Sobolev Inequalities and Concentration of Measure for Convex Functions and Polynomial Chaoses”

Modified log-Sobolev inequalities for convex functions on the real line. Sufficient conditions

Radosław Adamczak, Michał Strzelecki (2015)

Studia Mathematica

Similarity:

We provide a mild sufficient condition for a probability measure on the real line to satisfy a modified log-Sobolev inequality for convex functions, interpolating between the classical log-Sobolev inequality and a Bobkov-Ledoux type inequality. As a consequence we obtain dimension-free two-level concentration results for convex functions of independent random variables with sufficiently regular tail decay. We also provide a link between modified log-Sobolev...

Direct and Reverse Gagliardo-Nirenberg Inequalities from Logarithmic Sobolev Inequalities

Matteo Bonforte, Gabriele Grillo (2005)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

We investigate the connection between certain logarithmic Sobolev inequalities and generalizations of Gagliardo-Nirenberg inequalities. A similar connection holds between reverse logarithmic Sobolev inequalities and a new class of reverse Gagliardo-Nirenberg inequalities.

From the Prékopa-Leindler inequality to modified logarithmic Sobolev inequality

Ivan Gentil (2008)

Annales de la faculté des sciences de Toulouse Mathématiques

Similarity:

We develop in this paper an improvement of the method given by S. Bobkov and M. Ledoux in [BL00]. Using the Prékopa-Leindler inequality, we prove a modified logarithmic Sobolev inequality adapted for all measures on n , with a strictly convex and super-linear potential. This inequality implies modified logarithmic Sobolev inequality, developed in [GGM05, GGM07], for all uniformly strictly convex potential as well as the Euclidean logarithmic Sobolev inequality.

A sharp iteration principle for higher-order Sobolev embeddings

Andrea Cianchi, Luboš Pick, Lenka Slavíková (2014)

Banach Center Publications

Similarity:

We survey results from the paper [CPS] in which we developed a new sharp iteration method and applied it to show that the optimal Sobolev embeddings of any order can be derived from isoperimetric inequalities. We prove thereby that the well-known link between first-order Sobolev embeddings and isoperimetric inequalities translates to embeddings of any order, a fact that had not been known before. We show a general reduction principle that reduces Sobolev type inequalities of any order...

On equivalence of super log Sobolev and Nash type inequalities

Marco Biroli, Patrick Maheux (2014)

Colloquium Mathematicae

Similarity:

We prove the equivalence of Nash type and super log Sobolev inequalities for Dirichlet forms. We also show that both inequalities are equivalent to Orlicz-Sobolev type inequalities. No ultracontractivity of the semigroup is assumed. It is known that there is no equivalence between super log Sobolev or Nash type inequalities and ultracontractivity. We discuss Davies-Simon's counterexample as the borderline case of this equivalence and related open problems.

Poincaré inequalities and hitting times

Patrick Cattiaux, Arnaud Guillin, Pierre André Zitt (2013)

Annales de l'I.H.P. Probabilités et statistiques

Similarity:

Equivalence of the spectral gap, exponential integrability of hitting times and Lyapunov conditions is well known. We give here the correspondence (with quantitative results) for reversible diffusion processes. As a consequence, we generalize results of Bobkov in the one dimensional case on the value of the Poincaré constant for log-concave measures to superlinear potentials. Finally, we study various functional inequalities under different hitting times integrability conditions (polynomial,…)....

Variable Sobolev capacity and the assumptions on the exponent

Petteri Harjulehto, Peter Hästö, Mika Koskenoja, Susanna Varonen (2005)

Banach Center Publications

Similarity:

In a recent article the authors showed that it is possible to define a Sobolev capacity in variable exponent Sobolev space. However, this set function was shown to be a Choquet capacity only under certain assumptions on the variable exponent. In this article we relax these assumptions.