The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “The global existence of mild solutions for semilinear fractional Cauchy problems in the α-norm”

Existence of mild solutions for fractional evolution equations with nonlocal initial conditions

Pengyu Chen, Yongxiang Li, Qiang Li (2014)

Annales Polonici Mathematici

Similarity:

This paper discusses the existence of mild solutions for a class of semilinear fractional evolution equations with nonlocal initial conditions in an arbitrary Banach space. We assume that the linear part generates an equicontinuous semigroup, and the nonlinear part satisfies noncompactness measure conditions and appropriate growth conditions. An example to illustrate the applications of the abstract result is also given.

On a class of abstract degenerate fractional differential equations of parabolic type

Marko Kostić (2018)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

In this paper, we investigate a class of abstract degenerate fractional differential equations with Caputo derivatives. We consider subordinated fractional resolvent families generated by multivalued linear operators, which do have removable singularities at the origin. Semi-linear degenerate fractional Cauchy problems are also considered in this context.

IVPs for singular multi-term fractional differential equations with multiple base points and applications

Yuji Liu, Pinghua Yang (2014)

Applicationes Mathematicae

Similarity:

The purpose of this paper is to study global existence and uniqueness of solutions of initial value problems for nonlinear fractional differential equations. By constructing a special Banach space and employing fixed-point theorems, some sufficient conditions are obtained for the global existence and uniqueness of solutions of this kind of equations involving Caputo fractional derivatives and multiple base points. We apply the results to solve the forced logistic model with multi-term...

Existence results for impulsive semilinear fractional differential inclusions with delay in Banach spaces

Hammouche Hadda, Guerbati Kaddour, Benchohra Mouffak, Abada Nadjat (2013)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

Similarity:

In this paper, we introduce a new concept of mild solution of some class of semilinear fractional differential inclusions of order 0 < α < 1. Also we establish an existence result when the multivalued function has convex values. The result is obtained upon the nonlinear alternative of Leray-Schauder type.

Existence and uniqueness of integrable solutions to fractional Langevin equations involving two fractional orders with initial value problems

Choukri Derbazi, Hadda Hammouche (2021)

Mathematica Bohemica

Similarity:

We study the existence and uniqueness of integrable solutions to fractional Langevin equations involving two fractional orders with initial value problems. Our results are based on Schauder's fixed point theorem and the Banach contraction principle fixed point theorem. Examples are provided to illustrate the main results.

System of fractional differential equations with Erdélyi-Kober fractional integral conditions

Natthaphong Thongsalee, Sorasak Laoprasittichok, Sotiris K. Ntouyas, Jessada Tariboon (2015)

Open Mathematics

Similarity:

In this paper we study existence and uniqueness of solutions for a system consisting from fractional differential equations of Riemann-Liouville type subject to nonlocal Erdélyi-Kober fractional integral conditions. The existence and uniqueness of solutions is established by Banach’s contraction principle, while the existence of solutions is derived by using Leray-Schauder’s alternative. Examples illustrating our results are also presented.

A remark on local fractional calculus and ordinary derivatives

Ricardo Almeida, Małgorzata Guzowska, Tatiana Odzijewicz (2016)

Open Mathematics

Similarity:

In this short note we present a new general definition of local fractional derivative, that depends on an unknown kernel. For some appropriate choices of the kernel we obtain some known cases. We establish a relation between this new concept and ordinary differentiation. Using such formula, most of the fundamental properties of the fractional derivative can be derived directly.

Analytic solutions of the Helmholtz and Laplace equations by using local fractional derivative operators

Jamshad Ahmad, Syed Tauseef Mohyud-Din, H. M. Srivastava, Xiao-Jun Yang (2015)

Waves, Wavelets and Fractals

Similarity:

In this paper we develop analytical solutions for the Helmholtz and Laplace equations involving local fractional derivative operators. We implement the local fractional decomposition method (LFDM) for finding the exact solutions. The iteration procedure is based upon the local fractional derivative sense. The numerical results, whichwe present in this paper, show that the methodology used provides an efficient and simple tool for solving fractal phenomena arising in mathematical physics...

On a nonlocal problem for fractional integrodifferential inclusions in Banach spaces

Zuomao Yan (2011)

Annales Polonici Mathematici

Similarity:

This paper investigates a class of fractional functional integrodifferential inclusions with nonlocal conditions in Banach spaces. The existence of mild solutions of these inclusions is determined under mixed continuity and Carathéodory conditions by using strongly continuous operator semigroups and Bohnenblust-Karlin's fixed point theorem.

Global well-posedness and blow up for the nonlinear fractional beam equations

Shouquan Ma, Guixiang Xu (2010)

Applicationes Mathematicae

Similarity:

We establish the Strichartz estimates for the linear fractional beam equations in Besov spaces. Using these estimates, we obtain global well-posedness for the subcritical and critical defocusing fractional beam equations. Of course, we need to assume small initial data for the critical case. In addition, by the convexity method, we show that blow up occurs for the focusing fractional beam equations with negative energy.

On contraction principle applied to nonlinear fractional differential equations with derivatives of order α ∈ (0,1)

Małgorzata Klimek (2011)

Banach Center Publications

Similarity:

One-term and multi-term fractional differential equations with a basic derivative of order α ∈ (0,1) are solved. The existence and uniqueness of the solution is proved by using the fixed point theorem and the equivalent norms designed for a given value of parameters and function space. The explicit form of the solution obeying the set of initial conditions is given.

Hybrid fractional integro-differential inclusions

Sotiris K. Ntouyas, Sorasak Laoprasittichok, Jessada Tariboon (2015)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

Similarity:

In this paper we study an existence result for initial value problems for hybrid fractional integro-differential inclusions. A hybrid fixed point theorem for a sum of three operators due to Dhage is used. An example illustrating the obtained result is also presented.