Displaying similar documents to “On Kirchhoff type problems involving critical and singular nonlinearities”

Existence of a positive ground state solution for a Kirchhoff type problem involving a critical exponent

Lan Zeng, Chun Lei Tang (2016)

Annales Polonici Mathematici

Similarity:

We consider the following Kirchhoff type problem involving a critical nonlinearity: ⎧ - [ a + b ( Ω | u | ² d x ) m ] Δ u = f ( x , u ) + | u | 2 * - 2 u in Ω, ⎨ ⎩ u = 0 on ∂Ω, where Ω N (N ≥ 3) is a smooth bounded domain with smooth boundary ∂Ω, a > 0, b ≥ 0, and 0 < m < 2/(N-2). Under appropriate assumptions on f, we show the existence of a positive ground state solution via the variational method.

Existence of two positive solutions for a class of semilinear elliptic equations with singularity and critical exponent

Jia-Feng Liao, Jiu Liu, Peng Zhang, Chun-Lei Tang (2016)

Annales Polonici Mathematici

Similarity:

We study the following singular elliptic equation with critical exponent ⎧ - Δ u = Q ( x ) u 2 * - 1 + λ u - γ in Ω, ⎨u > 0 in Ω, ⎩u = 0 on ∂Ω, where Ω N (N≥3) is a smooth bounded domain, and λ > 0, γ ∈ (0,1) are real parameters. Under appropriate assumptions on Q, by the constrained minimizer and perturbation methods, we obtain two positive solutions for all λ > 0 small enough.

Fourth-order nonlinear elliptic equations with critical growth

David E. Edmunds, Donato Fortunato, Enrico Jannelli (1989)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Similarity:

In this paper we consider a nonlinear elliptic equation with critical growth for the operator Δ 2 in a bounded domain Ω n . We state some existence results when n 8 . Moreover, we consider 5 n 7 , expecially when Ω is a ball in n .

On the nonlinear Neumann problem at resonance with critical Sobolev nonlinearity

J. Chabrowski, Shusen Yan (2002)

Colloquium Mathematicae

Similarity:

We consider the Neumann problem for the equation - Δ u - λ u = Q ( x ) | u | 2 * - 2 u , u ∈ H¹(Ω), where Q is a positive and continuous coefficient on Ω̅ and λ is a parameter between two consecutive eigenvalues λ k - 1 and λ k . Applying a min-max principle based on topological linking we prove the existence of a solution.

Singular φ -Laplacian third-order BVPs with derivative dependance

Smaïl Djebali, Ouiza Saifi (2016)

Archivum Mathematicum

Similarity:

This work is devoted to the existence of solutions for a class of singular third-order boundary value problem associated with a φ -Laplacian operator and posed on the positive half-line; the nonlinearity also depends on the first derivative. The upper and lower solution method combined with the fixed point theory guarantee the existence of positive solutions when the nonlinearity is monotonic with respect to its arguments and may have a space singularity; however no Nagumo type condition...

Existence of three solutions to a double eigenvalue problem for the p-biharmonic equation

Lin Li, Shapour Heidarkhani (2012)

Annales Polonici Mathematici

Similarity:

Using a three critical points theorem and variational methods, we study the existence of at least three weak solutions of the Navier problem ⎧ Δ ( | Δ u | p 2 Δ u ) d i v ( | u | p 2 u ) = λ f ( x , u ) + μ g ( x , u ) in Ω, ⎨ ⎩u = Δu = 0 on ∂Ω, where Ω N (N ≥ 1) is a non-empty bounded open set with a sufficiently smooth boundary ∂Ω, λ > 0, μ > 0 and f,g: Ω × ℝ → ℝ are two L¹-Carathéodory functions.

Linking and the Morse complex

Michael Usher (2014)

Annales de la faculté des sciences de Toulouse Mathématiques

Similarity:

For a Morse function f on a compact oriented manifold M , we show that f has more critical points than the number required by the Morse inequalities if and only if there exists a certain class of link in M whose components have nontrivial linking number, such that the minimal value of f on one of the components is larger than its maximal value on the other. Indeed we characterize the precise number of critical points of f in terms of the Betti numbers of M and the behavior of f with respect...

Convergence of minimax structures and continuation of critical points for singularly perturbed systems

Benedetta Noris, Hugo Tavares, Susanna Terracini, Gianmaria Verzini (2012)

Journal of the European Mathematical Society

Similarity:

In the recent literature, the phenomenon of phase separation for binary mixtures of Bose–Einstein condensates can be understood, from a mathematical point of view, as governed by the asymptotic limit of the stationary Gross–Pitaevskii system - Δ u + u 3 + β u v 2 = λ u , - Δ v + v 3 + β u 2 v = μ v , u , v H 0 1 ( Ω ) , u , v > 0 , as the interspecies scattering length β goes to + . For this system we consider the associated energy functionals J β , β ( 0 , + ) , with L 2 -mass constraints, which limit J (as β + ) is strongly irregular. For such functionals, we construct multiple critical points...

On cusps and flat tops

Neil Dobbs (2014)

Annales de l’institut Fourier

Similarity:

Non-invertible Pesin theory is developed for a class of piecewise smooth interval maps which may have unbounded derivative, but satisfy a property analogous to C 1 + ϵ . The critical points are not required to verify a non-flatness condition, so the results are applicable to C 1 + ϵ maps with flat critical points. If the critical points are too flat, then no absolutely continuous invariant probability measure can exist. This generalises a result of Benedicks and Misiurewicz.

Fourth-order nonlinear elliptic equations with critical growth

David E. Edmunds, Donato Fortunato, Enrico Jannelli (1989)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti

Similarity:

In this paper we consider a nonlinear elliptic equation with critical growth for the operator Δ 2 in a bounded domain Ω n . We state some existence results when n 8 . Moreover, we consider 5 n 7 , expecially when Ω is a ball in n .

On a singular multi-point third-order boundary value problem on the half-line

Zakia Benbaziz, Smail Djebali (2020)

Mathematica Bohemica

Similarity:

We establish not only sufficient but also necessary conditions for existence of solutions to a singular multi-point third-order boundary value problem posed on the half-line. Our existence results are based on the Krasnosel’skii fixed point theorem on cone compression and expansion. Nonexistence results are proved under suitable a priori estimates. The nonlinearity f = f ( t , x , y ) which satisfies upper and lower-homogeneity conditions in the space variables x , y may be also singular at time t = 0 . Two examples...

On a class of ( p , q ) -Laplacian problems involving the critical Sobolev-Hardy exponents in starshaped domain

M.S. Shahrokhi-Dehkordi (2017)

Communications in Mathematics

Similarity:

Let Ω n be a bounded starshaped domain and consider the ( p , q ) -Laplacian problem - Δ p u - Δ q u = λ ( 𝐱 ) | u | p - 2 u + μ | u | r - 2 u where μ is a positive parameter, 1 < q p < n , r p and p : = n p n - p is the critical Sobolev exponent. In this short note we address the question of non-existence for non-trivial solutions to the ( p , q ) -Laplacian problem. In particular we show the non-existence of non-trivial solutions to the problem by using a method based on Pohozaev identity.

Existence of renormalized solutions for parabolic equations without the sign condition and with three unbounded nonlinearities

Y. Akdim, J. Bennouna, M. Mekkour, H. Redwane (2012)

Applicationes Mathematicae

Similarity:

We study the problem ∂b(x,u)/∂t - div(a(x,t,u,Du)) + H(x,t,u,Du) = μ in Q = Ω×(0,T), b ( x , u ) | t = 0 = b ( x , u ) in Ω, u = 0 in ∂Ω × (0,T). The main contribution of our work is to prove the existence of a renormalized solution without the sign condition or the coercivity condition on H(x,t,u,Du). The critical growth condition on H is only with respect to Du and not with respect to u. The datum μ is assumed to be in L ¹ ( Q ) + L p ' ( 0 , T ; W - 1 , p ' ( Ω ) ) and b(x,u₀) ∈ L¹(Ω).

Sharp L 1 estimates for singular transport equations

Sergiu Klainerman, Igor Rodnianski (2008)

Journal of the European Mathematical Society

Similarity:

We provide L 1 estimates for a transport equation which contains singular integral operators. The form of the equation was motivated by the study of Kirchhoff–Sobolev parametrices in a Lorentzian space-time satisfying the Einstein equations. While our main application is for a specific problem in General Relativity we believe that the phenomenon which our result illustrates is of a more general interest.

Asymptotic properties of ground states of scalar field equations with a vanishing parameter

Vitaly Moroz, Cyrill B. Muratov (2014)

Journal of the European Mathematical Society

Similarity:

We study the leading order behaviour of positive solutions of the equation - Δ u + ϵ u - | u | p - 2 u + | u | q - 2 u = 0 , x N , where N 3 , q > p > 2 and when ϵ > 0 is a small parameter. We give a complete characterization of all possible asymptotic regimes as a function of p , q and N . The behavior of solutions depends sensitively on whether p is less, equal or bigger than the critical Sobolev exponent 2 * = 2 N N - 2 . For p < 2 * the solution asymptotically coincides with the solution of the equation in which the last term is absent. For p > 2 * the solution asymptotically...

Semi-classical standing waves for nonlinear Schrödinger equations at structurally stable critical points of the potential

Jaeyoung Byeon, Kazunaga Tanaka (2013)

Journal of the European Mathematical Society

Similarity:

We consider a singularly perturbed elliptic equation ϵ 2 Δ u - V ( x ) u + f ( u ) = 0 , u ( x ) > 0 on N , 𝚕𝚒𝚖 x u ( x ) = 0 , where V ( x ) > 0 for any x N . The singularly perturbed problem has corresponding limiting problems Δ U - c U + f ( U ) = 0 , U ( x ) > 0 on N , 𝚕𝚒𝚖 x U ( x ) = 0 , c > 0 . Berestycki-Lions found almost necessary and sufficient conditions on nonlinearity f for existence of a solution of the limiting problem. There have been endeavors to construct solutions of the singularly perturbed problem concentrating around structurally stable critical points of potential V under possibly general conditions...

On asymptotic critical values and the Rabier Theorem

Zbigniew Jelonek (2004)

Banach Center Publications

Similarity:

Let X ⊂ kⁿ be a smooth affine variety of dimension n-r and let f = ( f , . . . , f m ) : X k m be a polynomial dominant mapping. It is well-known that the mapping f is a locally trivial fibration outside a small closed set B(f). It can be proved (using a general Fibration Theorem of Rabier) that the set B(f) is contained in the set K(f) of generalized critical values of f. In this note we study the Rabier function. We give a few equivalent expressions for this function, in particular we compare this function with...

Estimating the critical determinants of a class of three-dimensional star bodies

Werner Georg Nowak (2017)

Communications in Mathematics

Similarity:

In the problem of (simultaneous) Diophantine approximation in  3 (in the spirit of Hurwitz’s theorem), lower bounds for the critical determinant of the special three-dimensional body K 2 : ( y 2 + z 2 ) ( x 2 + y 2 + z 2 ) 1 play an important role; see [1], [6]. This article deals with estimates from below for the critical determinant Δ ( K c ) of more general star bodies K c : ( y 2 + z 2 ) c / 2 ( x 2 + y 2 + z 2 ) 1 , where c is any positive constant. These are obtained by inscribing into K c either a double cone, or an ellipsoid, or a double paraboloid, depending on the size of...

Soliton solutions for quasilinear Schrödinger equation with critical exponential growth in N

Caisheng Chen, Hongxue Song (2016)

Applications of Mathematics

Similarity:

In this work, we study the existence of nonnegative and nontrivial solutions for the quasilinear Schrödinger equation - Δ N u + b | u | N - 2 u - Δ N ( u 2 ) u = h ( u ) , x N , where Δ N is the N -Laplacian operator, h ( u ) is continuous and behaves as exp ( α | u | N / ( N - 1 ) ) when | u | . Using the Nehari manifold method and the Schwarz symmetrization with some special techniques, the existence of a nonnegative and nontrivial solution u ( x ) W 1 , N ( N ) with u ( x ) 0 as | x | is established.

Lieb–Thirring inequalities on the half-line with critical exponent

Tomas Ekholm, Rupert Frank (2008)

Journal of the European Mathematical Society

Similarity:

We consider the operator - d 2 / d r 2 - V in L 2 ( + ) with Dirichlet boundary condition at the origin. For the moments of its negative eigenvalues we prove the bound tr ( - d 2 / d r 2 - V ) - γ C γ , α + ( V ( r ) - 1 / ( 4 r 2 ) ) + γ + ( 1 + α ) / 2 r α d r for any α [ 0 , 1 ) and γ ( 1 - α ) / 2 . This includes a Lieb-Thirring inequality in the critical endpoint case.

Bubbling along boundary geodesics near the second critical exponent

Manuel del Pino, Monica Musso, Frank Pacard (2010)

Journal of the European Mathematical Society

Similarity:

The role of the second critical exponent p = ( n + 1 ) / ( n - 3 ) , the Sobolev critical exponent in one dimension less, is investigated for the classical Lane–Emden–Fowler problem Δ u + u p = 0 , u > 0 under zero Dirichlet boundary conditions, in a domain Ω in n with bounded, smooth boundary. Given Γ , a geodesic of the boundary with negative inner normal curvature we find that for p = ( n + 1 ) / ( n - 3 - ε ) , there exists a solution u ε such that | u ε | 2 converges weakly to a Dirac measure on Γ as ε 0 + , provided that Γ is nondegenerate in the sense of second...

A singular initial value problem for the equation u ( n ) ( x ) = g ( u ( x ) )

Wojciech Mydlarczyk (1998)

Annales Polonici Mathematici

Similarity:

We consider the problem of the existence of positive solutions u to the problem u ( n ) ( x ) = g ( u ( x ) ) , u ( 0 ) = u ' ( 0 ) = . . . = u ( n - 1 ) ( 0 ) = 0 (g ≥ 0,x > 0, n ≥ 2). It is known that if g is nondecreasing then the Osgood condition δ 1 / s [ s / g ( s ) ] 1 / n d s < is necessary and sufficient for the existence of nontrivial solutions to the above problem. We give a similar condition for other classes of functions g.