Semiproper ideals
Hiroshi Sakai (2005)
Fundamenta Mathematicae
Similarity:
We say that an ideal I on is semiproper if the corresponding poset is semiproper. In this paper we investigate properties of semiproper ideals on .
Hiroshi Sakai (2005)
Fundamenta Mathematicae
Similarity:
We say that an ideal I on is semiproper if the corresponding poset is semiproper. In this paper we investigate properties of semiproper ideals on .
Gülşen Ulucak, Ece Yetkin Çelikel (2020)
Czechoslovak Mathematical Journal
Similarity:
Let be a commutative ring with nonzero identity, let be the set of all ideals of and an expansion of ideals of defined by . We introduce the concept of -primary ideals in commutative rings. A proper ideal of is called a -primary ideal if whenever and , then or . Our purpose is to extend the concept of -ideals to -primary ideals of commutative rings. Then we investigate the basic properties of -primary ideals and also discuss the relations among -primary, -primary...
Stefania Gabelli (1988)
Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti
Similarity:
If is a domain with the ascending chain condition on (integral) invertible ideals, then the group of its invertible ideals is generated by the set of maximal invertible ideals. In this note we study some properties of and we prove that, if is a free group on , then is a locally factorial Krull domain.
P. Dodos, J. Lopez-Abad, S. Todorcevic (2012)
Fundamenta Mathematicae
Similarity:
Motivated by an application to the unconditional basic sequence problem appearing in our previous paper, we introduce analogues of the Laver ideal on ℵ₂ living on index sets of the form and use this to refine the well-known high-dimensional polarized partition relation for of Shelah.
János Kollár (1999)
Journal of the European Mathematical Society
Similarity:
Let be polynomials in variables without a common zero. Hilbert’s Nullstellensatz says that there are polynomials such that . The effective versions of this result bound the degrees of the in terms of the degrees of the . The aim of this paper is to generalize this to the case when the are replaced by arbitrary ideals. Applications to the Bézout theorem, to Łojasiewicz–type inequalities and to deformation theory are also discussed.
B. Sari, Th. Schlumprecht, N. Tomczak-Jaegermann, V. G. Troitsky (2007)
Studia Mathematica
Similarity:
It is well known that the only proper non-trivial norm closed ideal in the algebra L(X) for (1 ≤ p < ∞) or X = c₀ is the ideal of compact operators. The next natural question is to describe all closed ideals of for 1 ≤ p,q < ∞, p ≠ q, or equivalently, the closed ideals in for p < q. This paper shows that for 1 < p < 2 < q < ∞ there are at least four distinct proper closed ideals in , including one that has not been studied before. The proofs use various methods...
Lingli Zeng, Jizhu Nan (2016)
Czechoslovak Mathematical Journal
Similarity:
Let be a finite field of characteristic and a field which contains a primitive th root of unity and . Suppose that a classical group acts on the -vector space . Then it can induce the actions on the vector space and on the group algebra , respectively. In this paper we determine the structure of -invariant ideals of the group algebra , and establish the relationship between the invariant ideals of and the vector invariant ideals of , if is a unitary group or orthogonal...
Adam Anebri, Najib Mahdou, Emel Aslankarayiğit Uğurlu (2022)
Czechoslovak Mathematical Journal
Similarity:
Let be a commutative ring with a nonzero identity. In this study, we present a new class of ideals lying properly between the class of -ideals and the class of -ideals. A proper ideal of is said to be a quasi -ideal if is an -ideal of Many examples and results are given to disclose the relations between this new concept and others that already exist, namely, the -ideals, the quasi primary ideals, the -ideals and the -ideals. Moreover, we use the quasi -ideals to characterize...
Abdelamir Dabbabi, Ali Benhissi (2023)
Archivum Mathematicum
Similarity:
Let be a commutative ring and a multiplicative system of ideals. We say that is -Noetherian, if for each ideal of , there exist and a finitely generated ideal such that . In this paper, we study the transfer of this property to the polynomial ring and Nagata’s idealization.
Viktoriia Bilet, Oleksiy Dovgoshey, Jürgen Prestin (2015)
Czechoslovak Mathematical Journal
Similarity:
Let be the set of upper strongly porous at subsets of and let be the intersection of maximal ideals . Some characteristic properties of sets are obtained. We also find a characteristic property of the intersection of all maximal ideals contained in a given set which is closed under subsets. It is shown that the ideal generated by the so-called completely strongly porous at subsets of is a proper subideal of Earlier, completely strongly porous sets and some of their properties...
István Juhász, Lajos Soukup, William Weiss (2006)
Fundamenta Mathematicae
Similarity:
Let (α) denote the class of all cardinal sequences of length α associated with compact scattered spaces (or equivalently, superatomic Boolean algebras). Also put . We show that f ∈ (α) iff for some natural number n there are infinite cardinals and ordinals such that and where each . Under GCH we prove that if α < ω₂ then (i) ; (ii) if λ > cf(λ) = ω, ; (iii) if cf(λ) = ω₁, ; (iv) if cf(λ) > ω₁, . This yields a complete characterization of the classes (α) for all...
Alireza Olfati (2021)
Commentationes Mathematicae Universitatis Carolinae
Similarity:
A nonzero -module is atomic if for each two nonzero elements in , both cyclic submodules and have nonzero isomorphic submodules. In this article it is shown that for an infinite -space , the factor rings and have no atomic ideals. This fact generalizes a result published in paper by A. Mozaffarikhah, E. Momtahan, A. R. Olfati and S. Safaeeyan (2020), which says that for an infinite set , the factor ring has no atomic ideal. Another result is that for each infinite...
Saharon Shelah, Pauli Väisänen, Jouko Väänänen (2005)
Fundamenta Mathematicae
Similarity:
Let λ be an infinite cardinal number. The ordinal number δ(λ) is the least ordinal γ such that if ϕ is any sentence of , with a unary predicate D and a binary predicate ≺, and ϕ has a model ℳ with a well-ordering of type ≥ γ, then ϕ has a model ℳ ’ where is non-well-ordered. One of the interesting properties of this number is that the Hanf number of is exactly . It was proved in [BK71] that if ℵ₀ < λ < κ2λ = κ∙ ; ∙ cf(θ) ≥ λ⁺ and whenever μ < θ; ∙ . Then there...
J. Feinstein, D. Somerset (2000)
Studia Mathematica
Similarity:
Let A be a unital Banach function algebra with character space . For , let and be the ideals of functions vanishing at x and in a neighbourhood of x, respectively. It is shown that the hull of is connected, and that if x does not belong to the Shilov boundary of A then the set has an infinite connected subset. Various related results are given.
Yu Wang, Xiaoming Li (2023)
Czechoslovak Mathematical Journal
Similarity:
Let be the two-parameter quantized enveloping algebra and the locally finite subalgebra of under the adjoint action. The aim of this paper is to determine some ring-theoretical properties of in the case when is not a root of unity. Then we describe the annihilator ideals of finite dimensional simple modules of by generators.
Mehrdad Nasernejad, Kazem Khashyarmanesh, Leslie G. Roberts, Jonathan Toledo (2022)
Czechoslovak Mathematical Journal
Similarity:
Let be an ideal in a commutative Noetherian ring . Then the ideal has the strong persistence property if and only if for all , and has the symbolic strong persistence property if and only if for all , where denotes the th symbolic power of . We study the strong persistence property for some classes of monomial ideals. In particular, we present a family of primary monomial ideals failing the strong persistence property. Finally, we show that every square-free monomial...
Joan Bagaria, Carles Casacuberta, A. R. D. Mathias, Jiří Rosický (2015)
Journal of the European Mathematical Society
Similarity:
We lower substantially the strength of the assumptions needed for the validity of certain results in category theory and homotopy theory which were known to follow from Vopěnka’s principle. We prove that the necessary large-cardinal hypotheses depend on the complexity of the formulas defining the given classes, in the sense of the Lévy hierarchy. For example, the statement that, for a class of morphisms in a locally presentable category of structures, the orthogonal class of objects...