Displaying similar documents to “Sharp Norm Inequalities for Martingales and their Differential Subordinates”

Sharp moment inequalities for differentially subordinated martingales

Adam Osękowski (2010)

Studia Mathematica

Similarity:

We determine the optimal constants C p , q in the moment inequalities | | g | | p C p , q | | f | | q , 1 ≤ p< q< ∞, where f = (fₙ), g = (gₙ) are two martingales, adapted to the same filtration, satisfying |dgₙ| ≤ |dfₙ|, n = 0,1,2,..., with probability 1. Furthermore, we establish related sharp estimates ||g||₁ ≤ supₙΦ(|fₙ|) + L(Φ), where Φ is an increasing convex function satisfying certain growth conditions and L(Φ) depends only on Φ.

Sharp Ratio Inequalities for a Conditionally Symmetric Martingale

Adam Osękowski (2010)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

Let f be a conditionally symmetric martingale and let S(f) denote its square function. (i) For p,q > 0, we determine the best constants C p , q such that s u p n ( | f | p ) / ( 1 + S ² ( f ) ) q C p , q . Furthermore, the inequality extends to the case of Hilbert space valued f. (ii) For N = 1,2,... and q > 0, we determine the best constants C N , q ' such that s u p n ( f 2 N - 1 ) ( 1 + S ² ( f ) ) q C N , q ' . These bounds are extended to sums of conditionally symmetric variables which are not necessarily integrable. In addition, we show that neither of the inequalities above holds if...

Moser-Trudinger and logarithmic HLS inequalities for systems

Itai Shafrir, Gershon Wolansky (2005)

Journal of the European Mathematical Society

Similarity:

We prove several optimal Moser–Trudinger and logarithmic Hardy–Littlewood–Sobolev inequalities for systems in two dimensions. These include inequalities on the sphere S 2 , on a bounded domain Ω 2 and on all of 2 . In some cases we also address the question of existence of minimizers.

Sharp Weak-Type Inequality for the Haar System, Harmonic Functions and Martingales

Adam Osękowski (2014)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

Let ( h k ) k 0 be the Haar system on [0,1]. We show that for any vectors a k from a separable Hilbert space and any ε k [ - 1 , 1 ] , k = 0,1,2,..., we have the sharp inequality | | k = 0 n ε k a k h k | | W ( [ 0 , 1 ] ) 2 | | k = 0 n a k h k | | L ( [ 0 , 1 ] ) , n = 0,1,2,..., where W([0,1]) is the weak- L space introduced by Bennett, DeVore and Sharpley. The above estimate is generalized to the sharp weak-type bound | | Y | | W ( Ω ) 2 | | X | | L ( Ω ) , where X and Y stand for -valued martingales such that Y is differentially subordinate to X. An application to harmonic functions on Euclidean domains is presented.

On the distance between ⟨X⟩ and L in the space of continuous BMO-martingales

Litan Yan, Norihiko Kazamaki (2005)

Studia Mathematica

Similarity:

Let X = (Xₜ,ℱₜ) be a continuous BMO-martingale, that is, | | X | | B M O s u p T | | E [ | X - X T | | T ] | | < , where the supremum is taken over all stopping times T. Define the critical exponent b(X) by b ( X ) = b > 0 : s u p T | | E [ e x p ( b ² ( X - X T ) ) | T ] | | < , where the supremum is taken over all stopping times T. Consider the continuous martingale q(X) defined by q ( X ) = E [ X | ] - E [ X | ] . We use q(X) to characterize the distance between ⟨X⟩ and the class L of all bounded martingales in the space of continuous BMO-martingales, and we show that the inequalities 1 / 4 d ( q ( X ) , L ) b ( X ) 4 / d ( q ( X ) , L ) hold for every continuous BMO-martingale X. ...

Moment Inequality for the Martingale Square Function

Adam Osękowski (2013)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

Consider the sequence ( C ) n 1 of positive numbers defined by C₁ = 1 and C n + 1 = 1 + C ² / 4 , n = 1,2,.... Let M be a real-valued martingale and let S(M) denote its square function. We establish the bound |Mₙ|≤ Cₙ Sₙ(M), n=1,2,..., and show that for each n, the constant Cₙ is the best possible.

On a relation between norms of the maximal function and the square function of a martingale

Masato Kikuchi (2013)

Colloquium Mathematicae

Similarity:

Let Ω be a nonatomic probability space, let X be a Banach function space over Ω, and let ℳ be the collection of all martingales on Ω. For f = ( f ) n , let Mf and Sf denote the maximal function and the square function of f, respectively. We give some necessary and sufficient conditions for X to have the property that if f, g ∈ ℳ and | | M g | | X | | M f | | X , then | | S g | | X C | | S f | | X , where C is a constant independent of f and g.

The role of Onofri type inequalities in the symmetry properties of extremals for Caffarelli-Kohn-Nirenberg inequalities, in two space dimensions

Jean Dolbeault, Maria J. Esteban, Gabriella Tarantello (2008)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

Similarity:

We first discuss a class of inequalities of Onofri type depending on a parameter, in the two-dimensional Euclidean space. The inequality holds for radial functions if the parameter is larger than - 1 . Without symmetry assumption, it holds if and only if the parameter is in the interval ( - 1 , 0 ] . The inequality gives us some insight on the symmetry breaking phenomenon for the extremal functions of the Caffarelli-Kohn-Nirenberg inequality, in two space dimensions. In fact, for suitable sets of...

Noncommutative fractional integrals

Narcisse Randrianantoanina, Lian Wu (2015)

Studia Mathematica

Similarity:

Let ℳ be a hyperfinite finite von Nemann algebra and ( k ) k 1 be an increasing filtration of finite-dimensional von Neumann subalgebras of ℳ. We investigate abstract fractional integrals associated to the filtration ( k ) k 1 . For a finite noncommutative martingale x = ( x k ) 1 k n L ( ) adapted to ( k ) k 1 and 0 < α < 1, the fractional integral of x of order α is defined by setting I α x = k = 1 n ζ k α d x k for an appropriate sequence ( ζ k ) k 1 of scalars. For the case of a noncommutative dyadic martingale in L₁() where is the type II₁ hyperfinite factor...

Density estimation via best L 2 -approximation on classes of step functions

Dietmar Ferger, John Venz (2017)

Kybernetika

Similarity:

We establish consistent estimators of jump positions and jump altitudes of a multi-level step function that is the best L 2 -approximation of a probability density function f . If f itself is a step-function the number of jumps may be unknown.

Atomic decomposition of predictable martingale Hardy space with variable exponents

Zhiwei Hao (2015)

Czechoslovak Mathematical Journal

Similarity:

This paper is mainly devoted to establishing an atomic decomposition of a predictable martingale Hardy space with variable exponents defined on probability spaces. More precisely, let ( Ω , , ) be a probability space and p ( · ) : Ω ( 0 , ) be a -measurable function such that 0 < inf x Ω p ( x ) sup x Ω p ( x ) < . It is proved that a predictable martingale Hardy space 𝒫 p ( · ) has an atomic decomposition by some key observations and new techniques. As an application, we obtain the boundedness of fractional integrals on the predictable martingale Hardy...

Sharp Logarithmic Inequalities for Two Hardy-type Operators

Adam Osękowski (2015)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

For any locally integrable f on ℝⁿ, we consider the operators S and T which average f over balls of radius |x| and center 0 and x, respectively: S f ( x ) = 1 / | B ( 0 , | x | ) | B ( 0 , | x | ) f ( t ) d t , T f ( x ) = 1 / | B ( x , | x | ) | B ( x , | x | ) f ( t ) d t for x ∈ ℝⁿ. The purpose of the paper is to establish sharp localized LlogL estimates for S and T. The proof rests on a corresponding one-weight estimate for a martingale maximal function, a result which is of independent interest.

On risk reserve under distribution constraints

Mariusz Michta (2000)

Discussiones Mathematicae Probability and Statistics

Similarity:

The purpose of this work is a study of the following insurance reserve model: R ( t ) = η + 0 t p ( s , R ( s ) ) d s + 0 t σ ( s , R ( s ) ) d W s - Z ( t ) , t ∈ [0,T], P(η ≥ c) ≥ 1-ϵ, ϵ ≥ 0. Under viability-type assumptions on a pair (p,σ) the estimation γ with the property: i n f 0 t T P R ( t ) c γ is considered.

Lieb–Thirring inequalities on the half-line with critical exponent

Tomas Ekholm, Rupert Frank (2008)

Journal of the European Mathematical Society

Similarity:

We consider the operator - d 2 / d r 2 - V in L 2 ( + ) with Dirichlet boundary condition at the origin. For the moments of its negative eigenvalues we prove the bound tr ( - d 2 / d r 2 - V ) - γ C γ , α + ( V ( r ) - 1 / ( 4 r 2 ) ) + γ + ( 1 + α ) / 2 r α d r for any α [ 0 , 1 ) and γ ( 1 - α ) / 2 . This includes a Lieb-Thirring inequality in the critical endpoint case.

Sharp inequalities for Riesz transforms

Adam Osękowski (2014)

Studia Mathematica

Similarity:

We establish the following sharp local estimate for the family R j j = 1 d of Riesz transforms on d . For any Borel subset A of d and any function f : d , A | R j f ( x ) | d x C p | | f | | L p ( d ) | A | 1 / q , 1 < p < ∞. Here q = p/(p-1) is the harmonic conjugate to p, C p = [ 2 q + 2 Γ ( q + 1 ) / π q + 1 k = 0 ( - 1 ) k / ( 2 k + 1 ) q + 1 ] 1 / q , 1 < p < 2, and C p = [ 4 Γ ( q + 1 ) / π q k = 0 1 / ( 2 k + 1 ) q ] 1 / q , 2 ≤ p < ∞. This enables us to determine the precise values of the weak-type constants for Riesz transforms for 1 < p < ∞. The proof rests on appropriate martingale inequalities, which are of independent interest.

A Note on the Burkholder-Rosenthal Inequality

Adam Osękowski (2012)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

Let df be a Hilbert-space-valued martingale difference sequence. The paper is devoted to a new, elementary proof of the estimate k = 0 d f k p C p ( k = 0 ( | d f k | ² | k - 1 ) ) 1 / 2 p + ( k = 0 | d f k | p ) 1 / p p , with C p = O ( p / l n p ) as p → ∞.

Lower bounds for Schrödinger operators in H¹(ℝ)

Ronan Pouliquen (1999)

Studia Mathematica

Similarity:

We prove trace inequalities of type | | u ' | | L 2 2 + j k j | u ( a j ) | 2 λ | | u | | L 2 2 where u H 1 ( ) , under suitable hypotheses on the sequences a j j and k j j , with the first sequence increasing and the second bounded.

The density of the area integral in + n + 1

Richard F. Gundy, Martin L. Silverstein (1985)

Annales de l'institut Fourier

Similarity:

Let u ( x , y ) be a harmonic function in the half-plane R + n + 1 , n 2 . We define a family of functionals D ( u ; r ) , - &gt; r &gt; , that are analogs of the family of local times associated to the process u ( x t , y t ) where ( x t , y t ) is Brownian motion in R + n + 1 . We show that D ( u ) = sup r D ( u ; r ) is bounded in L p if and only if u ( x , y ) belongs to H p , an equivalence already proved by Barlow and Yor for the supremum of the local times. Our proof relies on the theory of singular integrals due to Caldéron and Zygmund, rather than the stochastic calculus.

Estimates of L p norms for sums of positive functions

Ilgiz Kayumov (2013)

Annales Universitatis Mariae Curie-Sklodowska, sectio A – Mathematica

Similarity:

We present new inequalities of L p norms for sums of positive functions. These inequalities are useful for investigation of convergence of simple partial fractions in L p ( ) .

Majorization of sequences, sharp vector Khinchin inequalities, and bisubharmonic functions

Albert Baernstein II, Robert C. Culverhouse (2002)

Studia Mathematica

Similarity:

Let X = i = 1 k a i U i , Y = i = 1 k b i U i , where the U i are independent random vectors, each uniformly distributed on the unit sphere in ℝⁿ, and a i , b i are real constants. We prove that if b ² i is majorized by a ² i in the sense of Hardy-Littlewood-Pólya, and if Φ: ℝⁿ → ℝ is continuous and bisubharmonic, then EΦ(X) ≤ EΦ(Y). Consequences include most of the known sharp L ² - L p Khinchin inequalities for sums of the form X. For radial Φ, bisubharmonicity is necessary as well as sufficient for the majorization inequality to always hold. Counterparts...

On pathwise uniqueness for stochastic differential equations driven by stable Lévy processes

Nicolas Fournier (2013)

Annales de l'I.H.P. Probabilités et statistiques

Similarity:

We study a one-dimensional stochastic differential equation driven by a stable Lévy process of order α with drift and diffusion coefficients b , σ . When α ( 1 , 2 ) , we investigate pathwise uniqueness for this equation. When α ( 0 , 1 ) , we study another stochastic differential equation, which is equivalent in law, but for which pathwise uniqueness holds under much weaker conditions. We obtain various results, depending on whether α ( 0 , 1 ) or α ( 1 , 2 ) and on whether the driving stable process is symmetric or not. Our...