Displaying similar documents to “On the Behavior of Power Series with Completely Additive Coefficients”

A note on the super-additive and sub-additive transformations of aggregation functions: The multi-dimensional case

Fateme Kouchakinejad, Alexandra Šipošová (2017)

Kybernetika

Similarity:

For an aggregation function A we know that it is bounded by A * and A * which are its super-additive and sub-additive transformations, respectively. Also, it is known that if A * is directionally convex, then A = A * and A * is linear; similarly, if A * is directionally concave, then A = A * and A * is linear. We generalize these results replacing the directional convexity and concavity conditions by the weaker assumptions of overrunning a super-additive function and underrunning a sub-additive function, respectively. ...

Sums of reciprocals of additive functions running over short intervals

J.-M. De Koninck, I. Kátai (2007)

Colloquium Mathematicae

Similarity:

Letting f(n) = A log n + t(n), where t(n) is a small additive function and A a positive constant, we obtain estimates for the quantities x n x + H 1 / f ( Q ( n ) ) and x p x + H 1 / f ( Q ( p ) ) , where H = H(x) satisfies certain growth conditions, p runs over prime numbers and Q is a polynomial with integer coefficients, whose leading coefficient is positive, and with all its roots simple.

On the behavior close to the unit circle of the power series whose coefficients are squared Möbius function values

Oleg Petrushov (2015)

Acta Arithmetica

Similarity:

We consider the behavior of the power series 0 ( z ) = n = 1 μ 2 ( n ) z n as z tends to e ( β ) = e 2 π i β along a radius of the unit circle. If β is irrational with irrationality exponent 2 then 0 ( e ( β ) r ) = O ( ( 1 - r ) - 1 / 2 - ε ) . Also we consider the cases of higher irrationality exponent. We prove that for each δ there exist irrational numbers β such that 0 ( e ( β ) r ) = Ω ( ( 1 - r ) - 1 + δ ) .

On Meager Additive and Null Additive Sets in the Cantor Space 2 ω and in ℝ

Tomasz Weiss (2009)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

Let T be the standard Cantor-Lebesgue function that maps the Cantor space 2 ω onto the unit interval ⟨0,1⟩. We prove within ZFC that for every X 2 ω , X is meager additive in 2 ω iff T(X) is meager additive in ⟨0,1⟩. As a consequence, we deduce that the cartesian product of meager additive sets in ℝ remains meager additive in ℝ × ℝ. In this note, we also study the relationship between null additive sets in 2 ω and ℝ.

More remarks on the intersection ideal 𝒩

Tomasz Weiss (2018)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We prove in ZFC that every 𝒩 additive set is 𝒩 additive, thus we solve Problem 20 from paper [Weiss T., A note on the intersection ideal 𝒩 , Comment. Math. Univ. Carolin. 54 (2013), no. 3, 437-445] in the negative.

On an additive problem of unlike powers in short intervals

Qingqing Zhang (2022)

Czechoslovak Mathematical Journal

Similarity:

We prove that almost all positive even integers n can be represented as p 2 2 + p 3 3 + p 4 4 + p 5 5 with | p k k - 1 4 N | N 1 - 1 / 54 + ε for 2 k 5 . As a consequence, we show that each sufficiently large odd integer N can be written as p 1 + p 2 2 + p 3 3 + p 4 4 + p 5 5 with | p k k - 1 5 N | N 1 - 1 / 54 + ε for 1 k 5 .

Ultrafilter extensions of asymptotic density

Jan Grebík (2019)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We characterize for which ultrafilters on ω is the ultrafilter extension of the asymptotic density on natural numbers σ -additive on the quotient boolean algebra 𝒫 ( ω ) / d 𝒰 or satisfies similar additive condition on 𝒫 ( ω ) / fin . These notions were defined in [Blass A., Frankiewicz R., Plebanek G., Ryll-Nardzewski C., A Note on extensions of asymptotic density, Proc. Amer. Math. Soc. 129 (2001), no. 11, 3313–3320] under the name A P (null) and A P (*). We also present a characterization of a P - and semiselective...

On generalized square-full numbers in an arithmetic progression

Angkana Sripayap, Pattira Ruengsinsub, Teerapat Srichan (2022)

Czechoslovak Mathematical Journal

Similarity:

Let a and b . Denote by R a , b the set of all integers n > 1 whose canonical prime representation n = p 1 α 1 p 2 α 2 p r α r has all exponents α i ( 1 i r ) being a multiple of a or belonging to the arithmetic progression a t + b , t 0 : = { 0 } . All integers in R a , b are called generalized square-full integers. Using the exponent pair method, an upper bound for character sums over generalized square-full integers is derived. An application on the distribution of generalized square-full integers in an arithmetic progression is given. ...

On the least almost-prime in arithmetic progressions

Liuying Wu (2024)

Czechoslovak Mathematical Journal

Similarity:

Let 𝒫 2 denote a positive integer with at most 2 prime factors, counted according to multiplicity. For integers a , q such that ( a , q ) = 1 , let 𝒫 2 ( q , a ) denote the least 𝒫 2 in the arithmetic progression { n q + a } n = 1 . It is proved that for sufficiently large q , we have 𝒫 2 ( q , a ) q 1 . 825 . This result constitutes an improvement upon that of J. Li, M. Zhang and Y. Cai (2023), who obtained 𝒫 2 ( q , a ) q 1 . 8345 .

On the T -conditionality of T -power based implications

Zuming Peng (2022)

Kybernetika

Similarity:

It is well known that, in forward inference in fuzzy logic, the generalized modus ponens is guaranteed by a functional inequality called the law of T -conditionality. In this paper, the T -conditionality for T -power based implications is deeply studied and the concise necessary and sufficient conditions for a power based implication I T being T -conditional are obtained. Moreover, the sufficient conditions under which a power based implication I T is T * -conditional are discussed, this discussions...

Sidon basis in polynomial rings over finite fields

Wentang Kuo, Shuntaro Yamagishi (2021)

Czechoslovak Mathematical Journal

Similarity:

Let 𝔽 q [ t ] denote the polynomial ring over 𝔽 q , the finite field of q elements. Suppose the characteristic of 𝔽 q is not 2 or 3 . We prove that there exist infinitely many N such that the set { f 𝔽 q [ t ] : deg f < N } contains a Sidon set which is an additive basis of order 3 .

Goldbach’s problem with primes in arithmetic progressions and in short intervals

Karin Halupczok (2013)

Journal de Théorie des Nombres de Bordeaux

Similarity:

Some mean value theorems in the style of Bombieri-Vinogradov’s theorem are discussed. They concern binary and ternary additive problems with primes in arithmetic progressions and short intervals. Nontrivial estimates for some of these mean values are given. As application inter alia, we show that for large odd n ¬ 1 ( 6 ) , Goldbach’s ternary problem n = p 1 + p 2 + p 3 is solvable with primes p 1 , p 2 in short intervals p i [ X i , X i + Y ] with X i θ i = Y , i = 1 , 2 , and θ 1 , θ 2 0 . 933 such that ( p 1 + 2 ) ( p 2 + 2 ) has at most 9 prime factors.

On the sum of dilations of a set

Antal Balog, George Shakan (2014)

Acta Arithmetica

Similarity:

We show that for any relatively prime integers 1 ≤ p < q and for any finite A ⊂ ℤ one has | p · A + q · A | ( p + q ) | A | - ( p q ) ( p + q - 3 ) ( p + q ) + 1 .