Selivanovski hard sets are hard
Janusz Pawlikowski (2015)
Fundamenta Mathematicae
Similarity:
Let . For n ≥ 2, we prove that if Selivanovski measurable functions from to Z give as preimages of H all Σₙ¹ subsets of , then so do continuous injections.
Janusz Pawlikowski (2015)
Fundamenta Mathematicae
Similarity:
Let . For n ≥ 2, we prove that if Selivanovski measurable functions from to Z give as preimages of H all Σₙ¹ subsets of , then so do continuous injections.
Ali Akbar Estaji, Ahmad Mahmoudi Darghadam (2023)
Archivum Mathematicum
Similarity:
Let () be the -ring of all (bounded) real-measurable functions on a -measurable space , let be the family of all such that is compact, and let be all that is compact for any . We introduce realcompact subrings of , we show that is a realcompact subring of , and also is a realcompact if and only if is a compact measurable space. For every nonzero real Riesz map , we prove that there is an element such that for every if is a compact measurable space....
Nijjwal Karak (2017)
Czechoslovak Mathematical Journal
Similarity:
In many recent articles, medians have been used as a replacement of integral averages when the function fails to be locally integrable. A point in a metric measure space is called a generalized Lebesgue point of a measurable function if the medians of over the balls converge to when converges to . We know that almost every point of a measurable, almost everywhere finite function is a generalized Lebesgue point and the same is true for every point of a continuous function....
Sergei Logunov (2022)
Commentationes Mathematicae Universitatis Carolinae
Similarity:
Let be the Tychonoff product of -many Tychonoff non-single point spaces . Let be a point in the closure of some whose weak Lindelöf number is strictly less than the cofinality of . Then we show that is not normal. Under some additional assumptions, is a butterfly-point in . In particular, this is true if either or and is infinite and not countably cofinal.
E. Ferreyra, T. Godoy, M. Urciuolo (2002)
Colloquium Mathematicae
Similarity:
Let , 1 ≤ i ≤ n, and for t > 0 and x = (x₁,...,xₙ) ∈ ℝⁿ, let , and . Let φ₁,...,φₙ be real functions in such that φ = (φ₁,..., φₙ) satisfies φ(t • x) = t ∘ φ(x). Let γ > 0 and let μ be the Borel measure on given by , where and dx denotes the Lebesgue measure on ℝⁿ. Let and let be the operator norm of from into , where the spaces are taken with respect to the Lebesgue measure. The type set is defined by . In the case for 1 ≤ i,k ≤ n we characterize the...
Ioana Ghenciu (2017)
Commentationes Mathematicae Universitatis Carolinae
Similarity:
For Banach spaces and , let denote the space of all continuous compact operators from to endowed with the operator norm. A Banach space has the property if every Grothendieck subset of is relatively weakly compact. In this paper we study Banach spaces with property . We investigate whether the spaces and have the property, when and have the property.
Igor Protasov (2022)
Commentationes Mathematicae Universitatis Carolinae
Similarity:
Given a coarse space with the bornology of bounded subsets, we extend the coarse structure from to the natural coarse structure on and say that a macro-uniform mapping (or ) is a selector (or 2-selector) of if for each (, respectively). We prove that a discrete coarse space admits a selector if and only if admits a 2-selector if and only if there exists a linear order “" on such that the family of intervals is a base for the bornology .
Salvador García-Ferreira, Y. F. Ortiz-Castillo (2015)
Commentationes Mathematicae Universitatis Carolinae
Similarity:
Let be the subspace of consisting of all weak -points. It is not hard to see that is a pseudocompact space. In this paper we shall prove that this space has stronger pseudocompact properties. Indeed, it is shown that is a -pseudocompact space for all .