Displaying similar documents to “Saddle point criteria for second order η -approximated vector optimization problems”

Optimization problem under two-sided (max, +)/(min, +) inequality constraints

Karel Zimmermann (2020)

Applications of Mathematics

Similarity:

( max , + ) -linear functions are functions which can be expressed as the maximum of a finite number of linear functions of one variable having the form f ( x 1 , , x h ) = max j ( a j + x j ) , where a j , j = 1 , , h , are real numbers. Similarly ( min , + ) -linear functions are defined. We will consider optimization problems in which the set of feasible solutions is the solution set of a finite inequality system, where the inequalities have ( max , + ) -linear functions of variables x on one side and ( min , + ) -linear functions of variables y on the other side....

Theoretical analysis for 1 - 2 minimization with partial support information

Haifeng Li, Leiyan Guo (2025)

Applications of Mathematics

Similarity:

We investigate the recovery of k -sparse signals using the 1 - 2 minimization model with prior support set information. The prior support set information, which is believed to contain the indices of nonzero signal elements, significantly enhances the performance of compressive recovery by improving accuracy, efficiency, reducing complexity, expanding applicability, and enhancing robustness. We assume k -sparse signals 𝐱 with the prior support T which is composed of g true indices and b wrong...

Properties of unique information

Johannes Rauh, Maik Schünemann, Jürgen Jost (2021)

Kybernetika

Similarity:

We study the unique information function U I ( T : X Y ) defined by Bertschinger et al. within the framework of information decompositions. In particular, we study uniqueness and support of the solutions to the convex optimization problem underlying the definition of U I . We identify sufficient conditions for non-uniqueness of solutions with full support in terms of conditional independence constraints and in terms of the cardinalities of T , X and Y . Our results are based on a reformulation of the first...

On a question of Schmidt and Summerer concerning 3 -systems

Johannes Schleischitz (2020)

Communications in Mathematics

Similarity:

Following a suggestion of W.M. Schmidt and L. Summerer, we construct a proper 3 -system ( P 1 , P 2 , P 3 ) with the property ϕ ¯ 3 = 1 . In fact, our method generalizes to provide n -systems with ϕ ¯ n = 1 , for arbitrary n 3 . We visualize our constructions with graphics. We further present explicit examples of numbers ξ 1 , ... , ξ n - 1 that induce the n -systems in question.

Generalized versions of Ilmanen lemma: Insertion of C 1 , ω or C loc 1 , ω functions

Václav Kryštof (2018)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We prove that for a normed linear space X , if f 1 : X is continuous and semiconvex with modulus ω , f 2 : X is continuous and semiconcave with modulus ω and f 1 f 2 , then there exists f C 1 , ω ( X ) such that f 1 f f 2 . Using this result we prove a generalization of Ilmanen lemma (which deals with the case ω ( t ) = t ) to the case of an arbitrary nontrivial modulus ω . This generalization (where a C l o c 1 , ω function is inserted) gives a positive answer to a problem formulated by A. Fathi and M. Zavidovique in 2010.

Three-space problems for the approximation property

A. Szankowski (2009)

Journal of the European Mathematical Society

Similarity:

It is shown that there is a subspace Z q of q for 1 < q < 2 which is isomorphic to q such that q / Z q does not have the approximation property. On the other hand, for 2 < p < there is a subspace Y p of p such that Y p does not have the approximation property (AP) but the quotient space p / Y p is isomorphic to p . The result is obtained by defining random “Enflo-Davie spaces” Y p which with full probability fail AP for all 2 < p and have AP for all 1 p 2 . For 1 < p 2 , Y p are isomorphic to p .

On compactness and connectedness of the paratingent

Wojciech Zygmunt (2016)

Annales Universitatis Mariae Curie-Sklodowska, sectio A – Mathematica

Similarity:

In this note we shall prove that for a continuous function ϕ : Δ n , where Δ ,  the paratingent of ϕ at a Δ is a non-empty and compact set in n if and only if ϕ satisfies Lipschitz condition in a neighbourhood of a . Moreover, in this case the paratingent is a connected set.