Displaying similar documents to “Approximation of functions from L p ( ω ̃ ) β by linear operators of conjugate Fourier series”

Lebesgue type points in strong (C,α) approximation of Fourier series

Włodzimierz Łenski, Bogdan Roszak (2011)

Banach Center Publications

Similarity:

We present an estimation of the H k , k r q , α f and H λ , u ϕ , α f means as approximation versions of the Totik type generalization (see [5], [6]) of the result of G. H. Hardy, J. E. Littlewood. Some corollaries on the norm approximation are also given.

The degree of approximation by Hausdorff means of a conjugate Fourier series

Sergiusz Kęska (2016)

Annales Universitatis Mariae Curie-Sklodowska, sectio A – Mathematica

Similarity:

The purpose of this paper is to analyze the degree of approximation of a function f ¯ that is a conjugate of a function f belonging to the Lipschitz class by Hausdorff means of a conjugate series of the Fourier series.

Some duality results on bounded approximation properties of pairs

Eve Oja, Silja Treialt (2013)

Studia Mathematica

Similarity:

The main result is as follows. Let X be a Banach space and let Y be a closed subspace of X. Assume that the pair ( X * , Y ) has the λ-bounded approximation property. Then there exists a net ( S α ) of finite-rank operators on X such that S α ( Y ) Y and | | S α | | λ for all α, and ( S α ) and ( S * α ) converge pointwise to the identity operators on X and X*, respectively. This means that the pair (X,Y) has the λ-bounded duality approximation property.

Approximation properties for modified ( p , q ) -Bernstein-Durrmeyer operators

Mohammad Mursaleen, Ahmed A. H. Alabied (2018)

Mathematica Bohemica

Similarity:

We introduce modified ( p , q ) -Bernstein-Durrmeyer operators. We discuss approximation properties for these operators based on Korovkin type approximation theorem and compute the order of convergence using usual modulus of continuity. We also study the local approximation property of the sequence of positive linear operators D n , p , q * and compute the rate of convergence for the function f belonging to the class Lip M ( γ ) .

Routh-type L 2 model reduction revisited

Wiesław Krajewski, Umberto Viaro (2018)

Kybernetika

Similarity:

A computationally simple method for generating reduced-order models that minimise the L 2 norm of the approximation error while preserving a number of second-order information indices as well as the steady-state value of the step response, is presented. The method exploits the energy-conservation property peculiar to the Routh reduction method and the interpolation property of the L 2 -optimal approximation. Two examples taken from the relevant literature show that the suggested techniques...

On subextension and approximation of plurisubharmonic functions with given boundary values

Hichame Amal (2014)

Annales Polonici Mathematici

Similarity:

Our aim in this article is the study of subextension and approximation of plurisubharmonic functions in χ ( Ω , H ) , the class of functions with finite χ-energy and given boundary values. We show that, under certain conditions, one can approximate any function in χ ( Ω , H ) by an increasing sequence of plurisubharmonic functions defined on strictly larger domains.

Best approximation in spaces of bounded linear operators

Grzegorz Lewicki

Similarity:

CONTENTSChapter 0...............................................................................................................................................................................5   0.1. Introduction..................................................................................................................................................................5   0.2. Preliminary results.......................................................................................................................................................9Chapter...

Convergence of greedy approximation II. The trigonometric system

S. V. Konyagin, V. N. Temlyakov (2003)

Studia Mathematica

Similarity:

We study the following nonlinear method of approximation by trigonometric polynomials. For a periodic function f we take as an approximant a trigonometric polynomial of the form G ( f ) : = k Λ f ̂ ( k ) e i ( k , x ) , where Λ d is a set of cardinality m containing the indices of the m largest (in absolute value) Fourier coefficients f̂(k) of the function f. Note that Gₘ(f) gives the best m-term approximant in the L₂-norm, and therefore, for each f ∈ L₂, ||f-Gₘ(f)||₂ → 0 as m → ∞. It is known from previous results that in...

Compact operators whose adjoints factor through subspaces of l p

Deba P. Sinha, Anil K. Karn (2002)

Studia Mathematica

Similarity:

For p ≥ 1, a subset K of a Banach space X is said to be relatively p-compact if K n = 1 α x : α B a l l ( l p ' ) , where p’ = p/(p-1) and x l p s ( X ) . An operator T ∈ B(X,Y) is said to be p-compact if T(Ball(X)) is relatively p-compact in Y. Similarly, weak p-compactness may be defined by considering x l p w ( X ) . It is proved that T is (weakly) p-compact if and only if T* factors through a subspace of l p in a particular manner. The normed operator ideals ( K p , κ p ) of p-compact operators and ( W p , ω p ) of weakly p-compact operators, arising from these factorizations,...

On the approximation of real continuous functions by series of solutions of a single system of partial differential equations

Carsten Elsner (2006)

Colloquium Mathematicae

Similarity:

We prove the existence of an effectively computable integer polynomial P(x,t₀,...,t₅) having the following property. Every continuous function f : s can be approximated with arbitrary accuracy by an infinite sum r = 1 H r ( x , . . . , x s ) C ( s ) of analytic functions H r , each solving the same system of universal partial differential equations, namely P ( x σ ; H r , H r / x σ , . . . , H r / x σ ) = 0 (σ = 1,..., s).

Around the Littlewood conjecture in Diophantine approximation

Yann Bugeaud (2014)

Publications mathématiques de Besançon

Similarity:

The Littlewood conjecture in Diophantine approximation claims that inf q 1 q · q α · q β = 0 holds for all real numbers α and β , where · denotes the distance to the nearest integer. Its p -adic analogue, formulated by de Mathan and Teulié in 2004, asserts that inf q 1 q · q α · | q | p = 0 holds for every real number α and every prime number p , where | · | p denotes the p -adic absolute value normalized by | p | p = p - 1 . We survey the known results on these conjectures and highlight recent developments. ...

On the compact approximation property

Vegard Lima, Åsvald Lima, Olav Nygaard (2004)

Studia Mathematica

Similarity:

We show that a Banach space X has the compact approximation property if and only if for every Banach space Y and every weakly compact operator T: Y → X, the space = S ∘ T: S compact operator on X is an ideal in = span(,T) if and only if for every Banach space Y and every weakly compact operator T: Y → X, there is a net ( S γ ) of compact operators on X such that s u p γ | | S γ T | | | | T | | and S γ I X in the strong operator topology. Similar results for dual spaces are also proved.

Rational approximation to real points on conics

Damien Roy (2013)

Annales de l’institut Fourier

Similarity:

A point ( ξ 1 , ξ 2 ) with coordinates in a subfield of of transcendence degree one over , with 1 , ξ 1 , ξ 2 linearly independent over , may have a uniform exponent of approximation by elements of 2 that is strictly larger than the lower bound 1 / 2 given by Dirichlet’s box principle. This appeared as a surprise, in connection to work of Davenport and Schmidt, for points of the parabola { ( ξ , ξ 2 ) ; ξ } . The goal of this paper is to show that this phenomenon extends to all real conics defined over , and that the largest...

Boundedness of Fourier integral operators on Fourier Lebesgue spaces and affine fibrations

Fabio Nicola (2010)

Studia Mathematica

Similarity:

We study Fourier integral operators of Hörmander’s type acting on the spaces L p ( d ) c o m p , 1 ≤ p ≤ ∞, of compactly supported distributions whose Fourier transform is in L p . We show that the sharp loss of derivatives for such an operator to be bounded on these spaces is related to the rank r of the Hessian of the phase Φ(x,η) with respect to the space variables x. Indeed, we show that operators of order m = -r|1/2-1/p| are bounded on L p ( d ) c o m p if the mapping x x Φ ( x , η ) is constant on the fibres, of codimension r,...

On the multiples of a badly approximable vector

Yann Bugeaud (2015)

Acta Arithmetica

Similarity:

Let d be a positive integer and α a real algebraic number of degree d + 1. Set α ̲ : = ( α , α ² , . . . , α d ) . It is well-known that c ( α ̲ ) : = l i m i n f q q 1 / d · | | q α ̲ | | > 0 , where ||·|| denotes the distance to the nearest integer. Furthermore, c ( α ̲ ) n - 1 / d c ( n α ̲ ) n c ( α ̲ ) for any integer n ≥ 1. Our main result asserts that there exists a real number C, depending only on α, such that c ( n α ̲ ) C n - 1 / d for any integer n ≥ 1.