Displaying similar documents to “Decomposing Borel functions using the Shore-Slaman join theorem”

On strong measure zero subsets of κ 2

Aapo Halko, Saharon Shelah (2001)

Fundamenta Mathematicae

Similarity:

We study the generalized Cantor space κ 2 and the generalized Baire space κ κ as analogues of the classical Cantor and Baire spaces. We equip κ κ with the topology where a basic neighborhood of a point η is the set ν: (∀j < i)(ν(j) = η(j)), where i < κ. We define the concept of a strong measure zero set of κ 2 . We prove for successor κ = κ < κ that the ideal of strong measure zero sets of κ 2 is κ -additive, where κ is the size of the smallest unbounded family in κ κ , and that the generalized Borel...

Infinite-Dimensionality modulo Absolute Borel Classes

Vitalij Chatyrko, Yasunao Hattori (2008)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

For each ordinal 1 ≤ α < ω₁ we present separable metrizable spaces X α , Y α and Z α such that (i) f X α , f Y α , f Z α = ω , where f is either trdef or ₀-trsur, (ii) A ( α ) - t r i n d X α = and M ( α ) - t r i n d X α = - 1 , (iii) A ( α ) - t r i n d Y α = - 1 and M ( α ) - t r i n d Y α = , and (iv) A ( α ) - t r i n d Z α = M ( α ) - t r i n d Z α = and A ( α + 1 ) M ( α + 1 ) - t r i n d Z α = - 1 . We also show that there exists no separable metrizable space W α with A ( α ) - t r i n d W α , M ( α ) - t r i n d W α and A ( α ) M ( α ) - t r i n d W α = , where A(α) (resp. M(α)) is the absolutely additive (resp. multiplicative) Borel class.

On the complexity of subspaces of S ω

Carlos Uzcátegui (2003)

Fundamenta Mathematicae

Similarity:

Let (X,τ) be a countable topological space. We say that τ is an analytic (resp. Borel) topology if τ as a subset of the Cantor set 2 X (via characteristic functions) is an analytic (resp. Borel) set. For example, the topology of the Arkhangel’skiĭ-Franklin space S ω is F σ δ . In this paper we study the complexity, in the sense of the Borel hierarchy, of subspaces of S ω . We show that S ω has subspaces with topologies of arbitrarily high Borel rank and it also has subspaces with a non-Borel topology....

Baire classes of complex L 1 -preduals

Pavel Ludvík, Jiří Spurný (2015)

Czechoslovak Mathematical Journal

Similarity:

Let X be a complex L 1 -predual, non-separable in general. We investigate extendability of complex-valued bounded homogeneous Baire- α functions on the set ext B X * of the extreme points of the dual unit ball B X * to the whole unit ball B X * . As a corollary we show that, given α [ 1 , ω 1 ) , the intrinsic α -th Baire class of X can be identified with the space of bounded homogeneous Baire- α functions on the set ext B X * when ext B X * satisfies certain topological assumptions. The paper is intended to be a complex counterpart to...

Diagonals of separately continuous functions of n variables with values in strongly σ -metrizable spaces

Olena Karlova, Volodymyr Mykhaylyuk, Oleksandr Sobchuk (2016)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We prove the result on Baire classification of mappings f : X × Y Z which are continuous with respect to the first variable and belongs to a Baire class with respect to the second one, where X is a P P -space, Y is a topological space and Z is a strongly σ -metrizable space with additional properties. We show that for any topological space X , special equiconnected space Z and a mapping g : X Z of the ( n - 1 ) -th Baire class there exists a strongly separately continuous mapping f : X n Z with the diagonal g . For wide classes...

Baire one functions and their sets of discontinuity

Jonald P. Fenecios, Emmanuel A. Cabral, Abraham P. Racca (2016)

Mathematica Bohemica

Similarity:

A characterization of functions in the first Baire class in terms of their sets of discontinuity is given. More precisely, a function f : is of the first Baire class if and only if for each ϵ > 0 there is a sequence of closed sets { C n } n = 1 such that D f = n = 1 C n and ω f ( C n ) < ϵ for each n where ω f ( C n ) = sup { | f ( x ) - f ( y ) | : x , y C n } and D f denotes the set of points of discontinuity of f . The proof of the main theorem is based on a recent ϵ - δ characterization of Baire class one functions as well as on a well-known theorem due to Lebesgue. Some direct applications...

Remarks on WDC sets

Dušan Pokorný, Luděk Zajíček (2021)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We study WDC sets, which form a substantial generalization of sets with positive reach and still admit the definition of curvature measures. Main results concern WDC sets A 2 . We prove that, for such A , the distance function d A = dist ( · , A ) is a “DC aura” for A , which implies that each closed locally WDC set in 2 is a WDC set. Another consequence is that compact WDC subsets of 2 form a Borel subset of the space of all compact sets.

A remark on functions continuous on all lines

Luděk Zajíček (2019)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We prove that each linearly continuous function f on n (i.e., each function continuous on all lines) belongs to the first Baire class, which answers a problem formulated by K. C. Ciesielski and D. Miller (2016). The same result holds also for f on an arbitrary Banach space X , if f has moreover the Baire property. We also prove (extending a known finite-dimensional result) that such f on a separable X is continuous at all points outside a first category set which is also null in any usual...

Failure of the Factor Theorem for Borel pre-Hilbert spaces

Tadeusz Dobrowolski, Witold Marciszewski (2002)

Fundamenta Mathematicae

Similarity:

In every infinite-dimensional Fréchet space X, we construct a linear subspace E such that E is an F σ δ σ -subset of X and contains a retract R so that R × E ω is not homeomorphic to E ω . This shows that Toruńczyk’s Factor Theorem fails in the Borel case.

Borel classes of uniformizations of sets with large sections

Petr Holický (2010)

Fundamenta Mathematicae

Similarity:

We give several refinements of known theorems on Borel uniformizations of sets with “large sections”. In particular, we show that a set B ⊂ [0,1] × [0,1] which belongs to Σ α , α ≥ 2, and which has all “vertical” sections of positive Lebesgue measure, has a Π α uniformization which is the graph of a Σ α -measurable mapping. We get a similar result for sets with nonmeager sections. As a corollary we derive an improvement of Srivastava’s theorem on uniformizations for Borel sets with G δ sections. ...

Complete pairs of coanalytic sets

Jean Saint Raymond (2007)

Fundamenta Mathematicae

Similarity:

Let X be a Polish space, and let C₀ and C₁ be disjoint coanalytic subsets of X. The pair (C₀,C₁) is said to be complete if for every pair (D₀,D₁) of disjoint coanalytic subsets of ω ω there exists a continuous function f : ω ω X such that f - 1 ( C ) = D and f - 1 ( C ) = D . We give several explicit examples of complete pairs of coanalytic sets.

Selivanovski hard sets are hard

Janusz Pawlikowski (2015)

Fundamenta Mathematicae

Similarity:

Let H Z 2 ω . For n ≥ 2, we prove that if Selivanovski measurable functions from 2 ω to Z give as preimages of H all Σₙ¹ subsets of 2 ω , then so do continuous injections.

Exponential separability is preserved by some products

Vladimir Vladimirovich Tkachuk (2022)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We show that exponential separability is an inverse invariant of closed maps with countably compact exponentially separable fibers. This implies that it is preserved by products with a scattered compact factor and in the products of sequential countably compact spaces. We also provide an example of a σ -compact crowded space in which all countable subspaces are scattered. If X is a Lindelöf space and every Y X with | Y | 2 ω 1 is scattered, then X is functionally countable; if every Y X with | Y | 2 𝔠 is scattered,...

Spaces with property ( D C ( ω 1 ) )

Wei-Feng Xuan, Wei-Xue Shi (2017)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We prove that if X is a first countable space with property ( D C ( ω 1 ) ) and with a G δ -diagonal then the cardinality of X is at most 𝔠 . We also show that if X is a first countable, DCCC, normal space then the extent of X is at most 𝔠 .

On subcompactness and countable subcompactness of metrizable spaces in ZF

Kyriakos Keremedis (2022)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We show in ZF that: (i) Every subcompact metrizable space is completely metrizable, and every completely metrizable space is countably subcompact. (ii) A metrizable space 𝐗 = ( X , T ) is countably compact if and only if it is countably subcompact relative to T . (iii) For every metrizable space 𝐗 = ( X , T ) , the following are equivalent: (a) 𝐗 is compact; (b) for every open filter of 𝐗 , { F ¯ : F } ; (c) 𝐗 is subcompact relative to T . We also show: (iv) The negation of each of the statements, (a) every countably subcompact...