Displaying similar documents to “The principal spectrum for linear nonautonomous parabolic PDEs of second order: Space-independent case”

Fermi Golden Rule, Feshbach Method and embedded point spectrum

Jan Dereziński (1998-1999)

Séminaire Équations aux dérivées partielles

Similarity:

A method to study the embedded point spectrum of self-adjoint operators is described. The method combines the Mourre theory and the Limiting Absorption Principle with the Feshbach Projection Method. A more complete description of this method is contained in a joint paper with V. Jak s ˇ ić, where it is applied to a study of embedded point spectrum of Pauli-Fierz Hamiltonians.

Generalized spectral perturbation and the boundary spectrum

Sonja Mouton (2021)

Czechoslovak Mathematical Journal

Similarity:

By considering arbitrary mappings ω from a Banach algebra A into the set of all nonempty, compact subsets of the complex plane such that for all a A , the set ω ( a ) lies between the boundary and connected hull of the exponential spectrum of a , we create a general framework in which to generalize a number of results involving spectra such as the exponential and singular spectra. In particular, we discover a number of new properties of the boundary spectrum.

Spectrum of L

W. Marek, K. Rasmussen

Similarity:

CONTENTS0. Motivation, results to be used in the sequel ................51. Slicing L α ’s ..........................................................102. Hereditarily countable, definable elements ................133. Spectrum of L.............................................................154. The width of elements of spectrum ............................195. Non-uniform strong definability ..................................266. Solution to a problem of Wilmers................................327....

The single-point spectrum operators satisfying Ritt's resolvent condition

Yu. Lyubich (2001)

Studia Mathematica

Similarity:

It is shown that an operator with the properties mentioned in the title does exist in the space L p ( 0 , 1 ) , 1 ≤ p ≤ ∞. The maximal sector for the extended resolvent condition can be prescribed a priori jointly with the corresponding order of the exponential growth of the resolvent in the complementary sector.

Conditions equivalent to C* independence

Shuilin Jin, Li Xu, Qinghua Jiang, Li Li (2012)

Studia Mathematica

Similarity:

Let and be mutually commuting unital C* subalgebras of (). It is shown that and are C* independent if and only if for all natural numbers n, m, for all n-tuples A = (A₁, ..., Aₙ) of doubly commuting nonzero operators of and m-tuples B = (B₁, ..., Bₘ) of doubly commuting nonzero operators of , S p ( A , B ) = S p ( A ) × S p ( B ) , where Sp denotes the joint Taylor spectrum.

On the long-time behaviour of solutions of the p-Laplacian parabolic system

Paweł Goldstein (2008)

Colloquium Mathematicae

Similarity:

Convergence of global solutions to stationary solutions for a class of degenerate parabolic systems related to the p-Laplacian operator is proved. A similar result is obtained for a variable exponent p. In the case of p constant, the convergence is proved to be ¹ l o c , and in the variable exponent case, L² and W 1 , p ( x ) -weak.

The third order spectrum of the p-biharmonic operator with weight

Khalil Ben Haddouch, Najib Tsouli, Zakaria El Allali (2014)

Applicationes Mathematicae

Similarity:

We show that the spectrum of Δ ² p u + 2 β · ( | Δ u | p - 2 Δ u ) + | β | ² | Δ u | p - 2 Δ u = α m | u | p - 2 u , where β N , under Navier boundary conditions, contains at least one sequence of eigensurfaces.

Subsets of nonempty joint spectrum in topological algebras

Antoni Wawrzyńczyk (2018)

Mathematica Bohemica

Similarity:

We give a necessary and a sufficient condition for a subset S of a locally convex Waelbroeck algebra 𝒜 to have a non-void left joint spectrum σ l ( S ) . In particular, for a Lie subalgebra L 𝒜 we have σ l ( L ) if and only if [ L , L ] generates in 𝒜 a proper left ideal. We also obtain a version of the spectral mapping formula for a modified left joint spectrum. Analogous theorems for the right joint spectrum and the Harte spectrum are also valid.

On the norm-closure of the class of hypercyclic operators

Christoph Schmoeger (1997)

Annales Polonici Mathematici

Similarity:

Let T be a bounded linear operator acting on a complex, separable, infinite-dimensional Hilbert space and let f: D → ℂ be an analytic function defined on an open set D ⊆ ℂ which contains the spectrum of T. If T is the limit of hypercyclic operators and if f is nonconstant on every connected component of D, then f(T) is the limit of hypercyclic operators if and only if f ( σ W ( T ) ) z : | z | = 1 is connected, where σ W ( T ) denotes the Weyl spectrum of T.

Some examples of cocycles with simple continuous singular spectrum

K. Frączek (2001)

Studia Mathematica

Similarity:

We study spectral properties of Anzai skew products T φ : ² ² defined by T φ ( z , ω ) = ( e 2 π i α z , φ ( z ) ω ) , where α is irrational and φ: → is a measurable cocycle. Precisely, we deal with the case where φ is piecewise absolutely continuous such that the sum of all jumps of φ equals zero. It is shown that the simple continuous singular spectrum of T φ on the orthocomplement of the space of functions depending only on the first variable is a “typical” property in the above-mentioned class of cocycles, if α admits a sufficiently...

Asymptotically self-similar solutions for the parabolic system modelling chemotaxis

Yūki Naito (2006)

Banach Center Publications

Similarity:

We consider a nonlinear parabolic system modelling chemotaxis u t = · ( u - u v ) , v t = Δ v + u in ℝ², t > 0. We first prove the existence of time-global solutions, including self-similar solutions, for small initial data, and then show the asymptotically self-similar behavior for a class of general solutions.

Resonant delocalization for random Schrödinger operators on tree graphs

Michael Aizenman, Simone Warzel (2013)

Journal of the European Mathematical Society

Similarity:

We analyse the spectral phase diagram of Schrödinger operators T + λ V on regular tree graphs, with T the graph adjacency operator and V a random potential given by i i d random variables. The main result is a criterion for the emergence of absolutely continuous ( a c ) spectrum due to fluctuation-enabled resonances between distant sites. Using it we prove that for unbounded random potentials a c spectrum appears at arbitrarily weak disorder ( λ 1 ) in an energy regime which extends beyond the spectrum of T ....

Reticulation of a 0-distributive Lattice

Y. S. Pawar (2015)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

Similarity:

A congruence relation θ on a 0-distributive lattice is defined such that the quotient lattice L / θ is a distributive lattice and the prime spectrum of L and of L / θ are homeomorphic. Also it is proved that the minimal prime spectrum (maximal spectrum) of L is homeomorphic with the minimal prime spectrum (maximal spectrum) of L / θ .

The norm spectrum in certain classes of commutative Banach algebras

H. S. Mustafayev (2011)

Colloquium Mathematicae

Similarity:

Let A be a commutative Banach algebra and let Σ A be its structure space. The norm spectrum σ(f) of the functional f ∈ A* is defined by σ ( f ) = f · a : a A ¯ Σ A , where f·a is the functional on A defined by ⟨f·a,b⟩ = ⟨f,ab⟩, b ∈ A. We investigate basic properties of the norm spectrum in certain classes of commutative Banach algebras and present some applications.

The essential spectrum of holomorphic Toeplitz operators on H p spaces

Mats Andersson, Sebastian Sandberg (2003)

Studia Mathematica

Similarity:

We compute the essential Taylor spectrum of a tuple of analytic Toeplitz operators T g on H p ( D ) , where D is a strictly pseudoconvex domain. We also provide specific formulas for the index of T g provided that g - 1 ( 0 ) is a compact subset of D.

Blowup rates for nonlinear heat equations with gradient terms and for parabolic inequalities

Philippe Souplet, Slim Tayachi (2001)

Colloquium Mathematicae

Similarity:

Consider the nonlinear heat equation (E): u t - Δ u = | u | p - 1 u + b | u | q . We prove that for a large class of radial, positive, nonglobal solutions of (E), one has the blowup estimates C ( T - t ) - 1 / ( p - 1 ) | | u ( t ) | | C ( T - t ) - 1 / ( p - 1 ) . Also, as an application of our method, we obtain the same upper estimate if u only satisfies the nonlinear parabolic inequality u t - u x x u p . More general inequalities of the form u t - u x x f ( u ) with, for instance, f ( u ) = ( 1 + u ) l o g p ( 1 + u ) are also treated. Our results show that for solutions of the parabolic inequality, one has essentially the same estimates as for solutions...

Absence of global solutions to a class of nonlinear parabolic inequalities

M. Guedda (2002)

Colloquium Mathematicae

Similarity:

We study the absence of nonnegative global solutions to parabolic inequalities of the type u t - ( - Δ ) β / 2 u - V ( x ) u + h ( x , t ) u p , where ( - Δ ) β / 2 , 0 < β ≤ 2, is the β/2 fractional power of the Laplacian. We give a sufficient condition which implies that the only global solution is trivial if p > 1 is small. Among other properties, we derive a necessary condition for the existence of local and global nonnegative solutions to the above problem for the function V satisfying V ( x ) a | x | - b , where a ≥ 0, b > 0, p > 1 and V₊(x): = maxV(x),0....