Displaying similar documents to “Banach spaces widely complemented in each other”

On complemented copies of c₀(ω₁) in C(Kⁿ) spaces

Leandro Candido, Piotr Koszmider (2016)

Studia Mathematica

Similarity:

Given a compact Hausdorff space K we consider the Banach space of real continuous functions C(Kⁿ) or equivalently the n-fold injective tensor product ̂ ε n C ( K ) or the Banach space of vector valued continuous functions C(K,C(K,C(K...,C(K)...). We address the question of the existence of complemented copies of c₀(ω₁) in ̂ ε n C ( K ) under the hypothesis that C(K) contains such a copy. This is related to the results of E. Saab and P. Saab that X ̂ ε Y contains a complemented copy of c₀ if one of the infinite-dimensional...

On ultrapowers of Banach spaces of type

Antonio Avilés, Félix Cabello Sánchez, Jesús M. F. Castillo, Manuel González, Yolanda Moreno (2013)

Fundamenta Mathematicae

Similarity:

We prove that no ultraproduct of Banach spaces via a countably incomplete ultrafilter can contain c₀ complemented. This shows that a "result" widely used in the theory of ultraproducts is wrong. We then amend a number of results whose proofs have been infected by that statement. In particular we provide proofs for the following statements: (i) All M-spaces, in particular all C(K)-spaces, have ultrapowers isomorphic to ultrapowers of c₀, as also do all their complemented subspaces isomorphic...

On the number of non-isomorphic subspaces of a Banach space

Valentin Ferenczi, Christian Rosendal (2005)

Studia Mathematica

Similarity:

We study the number of non-isomorphic subspaces of a given Banach space. Our main result is the following. Let be a Banach space with an unconditional basis ( e i ) i ; then either there exists a perfect set P of infinite subsets of ℕ such that for any two distinct A,B ∈ P, [ e i ] i A [ e i ] i B , or for a residual set of infinite subsets A of ℕ, [ e i ] i A is isomorphic to , and in that case, is isomorphic to its square, to its hyperplanes, uniformly isomorphic to [ e i ] i D for any D ⊂ ℕ, and isomorphic to a denumerable Schauder...

On the mutually non isomorphic l p ( l q )

Pilar Cembranos, Jose Mendoza (2016)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

Similarity:

In this note we survey the partial results needed to show the following general theorem: l p ( l q ) : 1 p , q + is a family of mutually non isomorphic Banach spaces. We also comment some related facts and open problems.

The Dual of a Non-reflexive L-embedded Banach Space Contains l Isometrically

Hermann Pfitzner (2010)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

A Banach space is said to be L-embedded if it is complemented in its bidual in such a way that the norm between the two complementary subspaces is additive. We prove that the dual of a non-reflexive L-embedded Banach space contains l isometrically.

Geometry of the Banach spaces C(βℕ × K,X) for compact metric spaces K

Dale E. Alspach, Elói Medina Galego (2011)

Studia Mathematica

Similarity:

A classical result of Cembranos and Freniche states that the C(K,X) space contains a complemented copy of c₀ whenever K is an infinite compact Hausdorff space and X is an infinite-dimensional Banach space. This paper takes this result as a starting point and begins a study of conditions under which the spaces C(α), α < ω₁, are quotients of or complemented in C(K,X). In contrast to the c₀ result, we prove that if C(βℕ ×[1,ω],X) contains a complemented copy of C ( ω ω ) then X contains a copy...

Second derivatives of norms and contractive complementation in vector-valued spaces

Bas Lemmens, Beata Randrianantoanina, Onno van Gaans (2007)

Studia Mathematica

Similarity:

We consider 1-complemented subspaces (ranges of contractive projections) of vector-valued spaces p ( X ) , where X is a Banach space with a 1-unconditional basis and p ∈ (1,2) ∪ (2,∞). If the norm of X is twice continuously differentiable and satisfies certain conditions connecting the norm and the notion of disjointness with respect to the basis, then we prove that every 1-complemented subspace of p ( X ) admits a basis of mutually disjoint elements. Moreover, we show that every contractive projection...

L 2 -Summand Vectors and Complemented Hilbertizable Subspaces

Antonio Aizpuru, Francisco J. García-Pacheco (2007)

Bollettino dell'Unione Matematica Italiana

Similarity:

In this paper, we show a necessary and sufficient condition for a real Banach space to have an infinite dimensional subspace which is hilbertizable and complemented using techniques related to L 2 -summand vectors.

Structure of Rademacher subspaces in Cesàro type spaces

Sergey V. Astashkin, Lech Maligranda (2015)

Studia Mathematica

Similarity:

The structure of the closed linear span of the Rademacher functions in the Cesàro space C e s is investigated. It is shown that every infinite-dimensional subspace of either is isomorphic to l₂ and uncomplemented in C e s , or contains a subspace isomorphic to c₀ and complemented in . The situation is rather different in the p-convexification of C e s if 1 < p < ∞.

On Banach spaces C(K) isomorphic to c₀(Γ)

Witold Marciszewski (2003)

Studia Mathematica

Similarity:

We give a characterization of compact spaces K such that the Banach space C(K) is isomorphic to the space c₀(Γ) for some set Γ. As an application we show that there exists an Eberlein compact space K of weight ω ω and with the third derived set K ( 3 ) empty such that the space C(K) is not isomorphic to any c₀(Γ). For this compactum K, the spaces C(K) and c ( ω ω ) are examples of weakly compactly generated (WCG) Banach spaces which are Lipschitz isomorphic but not isomorphic.

A C(K) Banach space which does not have the Schroeder-Bernstein property

Piotr Koszmider (2012)

Studia Mathematica

Similarity:

We construct a totally disconnected compact Hausdorff space K₊ which has clopen subsets K₊” ⊆ K₊’ ⊆ K₊ such that K₊” is homeomorphic to K₊ and hence C(K₊”) is isometric as a Banach space to C(K₊) but C(K₊’) is not isomorphic to C(K₊). This gives two nonisomorphic Banach spaces (necessarily nonseparable) of the form C(K) which are isomorphic to complemented subspaces of each other (even in the above strong isometric sense), providing a solution to the Schroeder-Bernstein problem for Banach...

On monotonic functions from the unit interval into a Banach space with uncountable sets of points of discontinuity

Artur Michalak (2003)

Studia Mathematica

Similarity:

We say that a function f from [0,1] to a Banach space X is increasing with respect to E ⊂ X* if x* ∘ f is increasing for every x* ∈ E. We show that if f: [0,1] → X is an increasing function with respect to a norming subset E of X* with uncountably many points of discontinuity and Q is a countable dense subset of [0,1], then (1) l i n f ( [ 0 , 1 ] ) ¯ contains an order isomorphic copy of D(0,1), (2) l i n f ( Q ) ¯ contains an isomorphic copy of C([0,1]), (3) l i n f ( [ 0 , 1 ] ) ¯ / l i n f ( Q ) ¯ contains an isomorphic copy of c₀(Γ) for some uncountable...

Rosenthal operator spaces

M. Junge, N. J. Nielsen, T. Oikhberg (2008)

Studia Mathematica

Similarity:

In 1969 Lindenstrauss and Rosenthal showed that if a Banach space is isomorphic to a complemented subspace of an L p -space, then it is either an L p -space or isomorphic to a Hilbert space. This is the motivation of this paper where we study non-Hilbertian complemented operator subspaces of non-commutative L p -spaces and show that this class is much richer than in the commutative case. We investigate the local properties of some new classes of operator spaces for every 2 < p < ∞ which...

Spaces of operators and c₀

P. Lewis (2001)

Studia Mathematica

Similarity:

Bessaga and Pełczyński showed that if c₀ embeds in the dual X* of a Banach space X, then ℓ¹ embeds complementably in X, and embeds as a subspace of X*. In this note the Diestel-Faires theorem and techniques of Kalton are used to show that if X is an infinite-dimensional Banach space, Y is an arbitrary Banach space, and c₀ embeds in L(X,Y), then embeds in L(X,Y), and ℓ¹ embeds complementably in X γ Y * . Applications to embeddings of c₀ in various spaces of operators are given.

The structure of Lindenstrauss-Pełczyński spaces

Jesús M. F. Castillo, Yolanda Moreno, Jesús Suárez (2009)

Studia Mathematica

Similarity:

Lindenstrauss-Pełczyński (for short ℒ) spaces were introduced by these authors [Studia Math. 174 (2006)] as those Banach spaces X such that every operator from a subspace of c₀ into X can be extended to the whole c₀. Here we obtain the following structure theorem: a separable Banach space X is an ℒ-space if and only if every subspace of c₀ is placed in X in a unique position, up to automorphisms of X. This, in combination with a result of Kalton [New York J. Math. 13 (2007)], provides...

On Lindenstrauss-Pełczyński spaces

Jesús M. F. Castillo, Yolanda Moreno, Jesús Suárez (2006)

Studia Mathematica

Similarity:

We consider some stability aspects of the classical problem of extension of C(K)-valued operators. We introduce the class ℒ of Banach spaces of Lindenstrauss-Pełczyński type as those such that every operator from a subspace of c₀ into them can be extended to c₀. We show that all ℒ-spaces are of type but not conversely. Moreover, -spaces will be characterized as those spaces E such that E-valued operators from w*(l₁,c₀)-closed subspaces of l₁ extend to l₁. Regarding examples we will...

Remarks on the complementability of spaces of Bochner integrable functions in spaces of vector measures

Giovanni Emmanuele (1996)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

In the paper [5] L. Drewnowski and the author proved that if X is a Banach space containing a copy of c 0 then L 1 ( μ , X ) is complemented in c a b v ( μ , X ) and conjectured that the same result is true if X is any Banach space without the Radon-Nikodym property. Recently, F. Freniche and L. Rodriguez-Piazza ([7]) disproved this conjecture, by showing that if μ is a finite measure and X is a Banach lattice not containing copies of c 0 , then L 1 ( μ , X ) is complemented in c a b v ( μ , X ) . Here, we show that the complementability of L 1 ( μ , X ) ...

Geometry of Banach spaces and biorthogonal systems

S. Dilworth, Maria Girardi, W. Johnson (2000)

Studia Mathematica

Similarity:

A separable Banach space X contains 1 isomorphically if and only if X has a bounded fundamental total w c 0 * -stable biorthogonal system. The dual of a separable Banach space X fails the Schur property if and only if X has a bounded fundamental total w c 0 * -biorthogonal system.

On the Banach-Mazur distance between continuous function spaces with scattered boundaries

Jakub Rondoš (2023)

Czechoslovak Mathematical Journal

Similarity:

We study the dependence of the Banach-Mazur distance between two subspaces of vector-valued continuous functions on the scattered structure of their boundaries. In the spirit of a result of Y. Gordon (1970), we show that the constant 2 appearing in the Amir-Cambern theorem may be replaced by 3 for some class of subspaces. We achieve this by showing that the Banach-Mazur distance of two function spaces is at least 3, if the height of the set of weak peak points of one of the spaces differs...

Embeddings of C(K) spaces into C(S,X) spaces with distortion strictly less than 3

Leandro Candido, Elói Medina Galego (2013)

Fundamenta Mathematicae

Similarity:

In the spirit of the classical Banach-Stone theorem, we prove that if K and S are intervals of ordinals and X is a Banach space having non-trivial cotype, then the existence of an isomorphism T from C(K, X) onto C(S,X) with distortion | | T | | | | T - 1 | | strictly less than 3 implies that some finite topological sum of K is homeomorphic to some finite topological sum of S. Moreover, if Xⁿ contains no subspace isomorphic to X n + 1 for every n ∈ ℕ, then K is homeomorphic to S. In other words, we obtain a vector-valued...

Schauder bases and the bounded approximation property in separable Banach spaces

Jorge Mujica, Daniela M. Vieira (2010)

Studia Mathematica

Similarity:

Let E be a separable Banach space with the λ-bounded approximation property. We show that for each ϵ > 0 there is a Banach space F with a Schauder basis such that E is isometrically isomorphic to a 1-complemented subspace of F and, moreover, the sequence (Tₙ) of canonical projections in F has the properties s u p n | | T | | λ + ϵ and l i m s u p n | | T | | λ . This is a sharp quantitative version of a classical result obtained independently by Pełczyński and by Johnson, Rosenthal and Zippin.

On Some Properties of Separately Increasing Functions from [0,1]ⁿ into a Banach Space

Artur Michalak (2014)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

We say that a function f from [0,1] to a Banach space X is increasing with respect to E ⊂ X* if x* ∘ f is increasing for every x* ∈ E. A function f : [ 0 , 1 ] m X is separately increasing if it is increasing in each variable separately. We show that if X is a Banach space that does not contain any isomorphic copy of c₀ or such that X* is separable, then for every separately increasing function f : [ 0 , 1 ] m X with respect to any norming subset there exists a separately increasing function g : [ 0 , 1 ] m such that the sets of...

Subspaces of L p , p > 2, determined by partitions and weights

Dale E. Alspach, Simei Tong (2003)

Studia Mathematica

Similarity:

Many of the known complemented subspaces of L p have realizations as sequence spaces. In this paper a systematic approach to defining these spaces which uses partitions and weights is introduced. This approach gives a unified description of many well known complemented subspaces of L p . It is proved that the class of spaces with such norms is stable under (p,2) sums. By introducing the notion of an envelope norm, we obtain a necessary condition for a Banach sequence space with norm given...

An indecomposable and unconditionally saturated Banach space

Spiros A. Argyros, Antonis Manoussakis (2003)

Studia Mathematica

Similarity:

We construct an indecomposable reflexive Banach space X i u s such that every infinite-dimensional closed subspace contains an unconditional basic sequence. We also show that every operator T ( X i u s ) is of the form λI + S with S a strictly singular operator.

The Maurey extension property for Banach spaces with the Gordon-Lewis property and related structures

P. G. Casazza, N. J. Nielsen (2003)

Studia Mathematica

Similarity:

The main result of this paper states that if a Banach space X has the property that every bounded operator from an arbitrary subspace of X into an arbitrary Banach space of cotype 2 extends to a bounded operator on X, then every operator from X to an L₁-space factors through a Hilbert space, or equivalently B ( , X * ) = Π ( , X * ) . If in addition X has the Gaussian average property, then it is of type 2. This implies that the same conclusion holds if X has the Gordon-Lewis property (in particular X could...

Estimation of the Szlenk index of Banach spaces via Schreier spaces

Ryan Causey (2013)

Studia Mathematica

Similarity:

For each ordinal α < ω₁, we prove the existence of a Banach space with a basis and Szlenk index ω α + 1 which is universal for the class of separable Banach spaces with Szlenk index not exceeding ω α . Our proof involves developing a characterization of which Banach spaces embed into spaces with an FDD with upper Schreier space estimates.

Uniqueness of unconditional basis of p ( c ) and p ( ) , 0 < p < 1

F. Albiac, C. Leránoz (2002)

Studia Mathematica

Similarity:

We prove that the quasi-Banach spaces p ( c ) and p ( ) (0 < p < 1) have a unique unconditional basis up to permutation. Bourgain, Casazza, Lindenstrauss and Tzafriri have previously proved that the same is true for the respective Banach envelopes ( c ) and ℓ₁(ℓ₂). They used duality techniques which are not available in the non-locally convex case.

Corrigendum to the paper “The universal Banach space with a K -suppression unconditional basis”

Taras O. Banakh, Joanna Garbulińska-Wegrzyn (2020)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We observe that the notion of an almost 𝔉ℑ K -universal based Banach space, introduced in our earlier paper [1]: Banakh T., Garbulińska-Wegrzyn J., The universal Banach space with a K -suppression unconditional basis, Comment. Math. Univ. Carolin. 59 (2018), no. 2, 195–206, is vacuous for K = 1 . Taking into account this discovery, we reformulate Theorem 5.2 from [1] in order to guarantee that the main results of [1] remain valid.