Displaying similar documents to “Noncommutative extensions of the Fourier transform and its logarithm”

The Fourier transform in Lebesgue spaces

Erik Talvila (2025)

Czechoslovak Mathematical Journal

Similarity:

For each f L p ( ) ( 1 p < ) it is shown that the Fourier transform is the distributional derivative of a Hölder continuous function. For each p , a norm is defined so that the space of Fourier transforms is isometrically isomorphic to L p ( ) . There is an exchange theorem and inversion in norm.

On the order of magnitude of Walsh-Fourier transform

Bhikha Lila Ghodadra, Vanda Fülöp (2020)

Mathematica Bohemica

Similarity:

For a Lebesgue integrable complex-valued function f defined on + : = [ 0 , ) let f ^ be its Walsh-Fourier transform. The Riemann-Lebesgue lemma says that f ^ ( y ) 0 as y . But in general, there is no definite rate at which the Walsh-Fourier transform tends to zero. In fact, the Walsh-Fourier transform of an integrable function can tend to zero as slowly as we wish. Therefore, it is interesting to know for functions of which subclasses of L 1 ( + ) there is a definite rate at which the Walsh-Fourier transform tends...

Best constants for some operators associated with the Fourier and Hilbert transforms

B. Hollenbeck, N. J. Kalton, I. E. Verbitsky (2003)

Studia Mathematica

Similarity:

We determine the norm in L p ( ) , 1 < p < ∞, of the operator I - s c , where c and s are respectively the cosine and sine Fourier transforms on the positive real axis, and I is the identity operator. This solves a problem posed in 1984 by M. S. Birman [Bir] which originated in scattering theory for unbounded obstacles in the plane. We also obtain the L p -norms of the operators aI + bH, where H is the Hilbert transform (conjugate function operator) on the circle or real line, for arbitrary real...

General Dirichlet series, arithmetic convolution equations and Laplace transforms

Helge Glöckner, Lutz G. Lucht, Štefan Porubský (2009)

Studia Mathematica

Similarity:

In the earlier paper [Proc. Amer. Math. Soc. 135 (2007)], we studied solutions g: ℕ → ℂ to convolution equations of the form a d g d + a d - 1 g ( d - 1 ) + + a g + a = 0 , where a , . . . , a d : are given arithmetic functions associated with Dirichlet series which converge on some right half plane, and also g is required to be such a function. In this article, we extend our previous results to multidimensional general Dirichlet series of the form x X f ( x ) e - s x ( s k ), where X [ 0 , ) k is an additive subsemigroup. If X is discrete and a certain solvability criterion...

Conditional Fourier-Feynman transform given infinite dimensional conditioning function on abstract Wiener space

Jae Gil Choi, Sang Kil Shim (2023)

Czechoslovak Mathematical Journal

Similarity:

We study a conditional Fourier-Feynman transform (CFFT) of functionals on an abstract Wiener space ( H , B , ν ) . An infinite dimensional conditioning function is used to define the CFFT. To do this, we first present a short survey of the conditional Wiener integral concerning the topic of this paper. We then establish evaluation formulas for the conditional Wiener integral on the abstract Wiener space B . Using the evaluation formula, we next provide explicit formulas for CFFTs of functionals in...

On some free semigroups, generated by matrices

Piotr Słanina (2015)

Czechoslovak Mathematical Journal

Similarity:

Let A = 1 2 0 1 , B λ = 1 0 λ 1 . We call a complex number λ “semigroup free“ if the semigroup generated by A and B λ is free and “free” if the group generated by A and B λ is free. First families of semigroup free λ ’s were described by J. L. Brenner, A. Charnow (1978). In this paper we enlarge the set of known semigroup free λ ’s. To do it, we use a new version of “Ping-Pong Lemma” for semigroups embeddable in groups. At the end we present most of the known results related to semigroup free and free numbers in a common...

On the vector-valued Fourier transform and compatibility of operators

In Sook Park (2005)

Studia Mathematica

Similarity:

Let be a locally compact abelian group and let 1 < p ≤ 2. ’ is the dual group of , and p’ the conjugate exponent of p. An operator T between Banach spaces X and Y is said to be compatible with the Fourier transform F if F T : L p ( ) X L p ' ( ' ) Y admits a continuous extension [ F , T ] : [ L p ( ) , X ] [ L p ' ( ' ) , Y ] . Let T p denote the collection of such T’s. We show that T p × = T p × = T p × for any and positive integer n. Moreover, if the factor group of by its identity component is a direct sum of a torsion-free group and a finite group with discrete topology then...

Hardy's theorem for the helgason Fourier transform on noncompact rank one symmetric spaces

S. Thangavelu (2002)

Colloquium Mathematicae

Similarity:

Let G be a semisimple Lie group with Iwasawa decomposition G = KAN. Let X = G/K be the associated symmetric space and assume that X is of rank one. Let M be the centraliser of A in K and consider an orthonormal basis Y δ , j : δ K ̂ , 1 j d δ of L²(K/M) consisting of K-finite functions of type δ on K/M. For a function f on X let f̃(λ,b), λ ∈ ℂ, be the Helgason Fourier transform. Let h t be the heat kernel associated to the Laplace-Beltrami operator and let Q δ ( i λ + ϱ ) be the Kostant polynomials. We establish the following...

L p - L q estimates for some convolution operators with singular measures on the Heisenberg group

T. Godoy, P. Rocha (2013)

Colloquium Mathematicae

Similarity:

We consider the Heisenberg group ℍⁿ = ℂⁿ × ℝ. Let ν be the Borel measure on ℍⁿ defined by ν ( E ) = χ E ( w , φ ( w ) ) η ( w ) d w , where φ ( w ) = j = 1 n a j | w j | ² , w = (w₁,...,wₙ) ∈ ℂⁿ, a j , and η(w) = η₀(|w|²) with η C c ( ) . We characterize the set of pairs (p,q) such that the convolution operator with ν is L p ( ) - L q ( ) bounded. We also obtain L p -improving properties of measures supported on the graph of the function φ ( w ) = | w | 2 m .

On the K-theory of the C * -algebra generated by the left regular representation of an Ore semigroup

Joachim Cuntz, Siegfried Echterhoff, Xin Li (2015)

Journal of the European Mathematical Society

Similarity:

We compute the K -theory of C * -algebras generated by the left regular representation of left Ore semigroups satisfying certain regularity conditions. Our result describes the K -theory of these semigroup C * -algebras in terms of the K -theory for the reduced group C * -algebras of certain groups which are typically easier to handle. Then we apply our result to specific semigroups from algebraic number theory.

On semigroups with an infinitesimal operator

Jolanta Olko (2005)

Annales Polonici Mathematici

Similarity:

Let F t : t 0 be an iteration semigroup of linear continuous set-valued functions. If the semigroup has an infinitesimal operator then it is a uniformly continuous semigroup majorized by an exponential semigroup. Moreover, for sufficiently small t every linear selection of F t is invertible and there exists an exponential semigroup f t : t 0 of linear continuous selections f t of F t .

On the Cauchy problem for convolution equations

(2013)

Colloquium Mathematicae

Similarity:

We consider one-parameter (C₀)-semigroups of operators in the space ' ( ; m ) with infinitesimal generator of the form ( G * ) | ' ( ; m ) where G is an M m × m -valued rapidly decreasing distribution on ℝⁿ. It is proved that the Petrovskiĭ condition for forward evolution ensures not only the existence and uniqueness of the above semigroup but also its nice behaviour after restriction to whichever of the function spaces ( ; m ) , L p ( ; m ) , p ∈ [1,∞], ( a ) ( ; m ) , a ∈ ]0,∞[, or the spaces L q ' ( ; m ) , q ∈ ]1,∞], of bounded distributions.

On left ϕ -biflat Banach algebras

Amir Sahami, Mehdi Rostami, Abdolrasoul Pourabbas (2020)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We study the notion of left ϕ -biflatness for Segal algebras and semigroup algebras. We show that the Segal algebra S ( G ) is left ϕ -biflat if and only if G is amenable. Also we characterize left ϕ -biflatness of semigroup algebra l 1 ( S ) in terms of biflatness, when S is a Clifford semigroup.

Characterization of the convolution operators on quasianalytic classes of Beurling type that admit a continuous linear right inverse

José Bonet, Reinhold Meise (2008)

Studia Mathematica

Similarity:

Extending previous work by Meise and Vogt, we characterize those convolution operators, defined on the space ( ω ) ( ) of (ω)-quasianalytic functions of Beurling type of one variable, which admit a continuous linear right inverse. Also, we characterize those (ω)-ultradifferential operators which admit a continuous linear right inverse on ( ω ) [ a , b ] for each compact interval [a,b] and we show that this property is in fact weaker than the existence of a continuous linear right inverse on ( ω ) ( ) .

Solution of a functional equation on compact groups using Fourier analysis

Abdellatif Chahbi, Brahim Fadli, Samir Kabbaj (2015)

Annales Universitatis Mariae Curie-Sklodowska, sectio A – Mathematica

Similarity:

Let G be a compact group, let n N { 0 , 1 } be a fixed element and let σ be a continuous automorphism on G such that σ n = I . Using the non-abelian Fourier transform, we determine the non-zero continuous solutions f : G C of the functional equation f ( x y ) + k = 1 n - 1 f ( σ k ( y ) x ) = n f ( x ) f ( y ) , x , y G , in terms of unitary characters of G .

Polar wavelets and associated Littlewood-Paley theory

Epperson Jay, Frazier Michael

Similarity:

Abstract We develop an almost orthogonal wavelet-type expansion in ℝ² which is adapted to polar coordinates. We start by defining a product Fourier-Hankel transform f̂ and proving a sampling formula for f such that f̂ is compactly supported. For general f, the sampling formula and a partition of unity lead to an identity of the form f = μ , k , m f , φ μ k m ψ μ k m , in which each function φ μ k m and ψ μ k m is concentrated near a certain annular sector, has compactly supported product Fourier-Hankel transform, and is smooth...

Presentations for subsemigroups of P D n

Abdullahi Umar (2019)

Czechoslovak Mathematical Journal

Similarity:

Let [ n ] = { 1 , ... , n } be an n -chain. We give presentations for the following transformation semigroups: the semigroup of full order-decreasing mappings of [ n ] , the semigroup of partial one-to-one order-decreasing mappings of [ n ] , the semigroup of full order-preserving and order-decreasing mappings of [ n ] , the semigroup of partial one-to-one order-preserving and order-decreasing mappings of [ n ] , and the semigroup of partial order-preserving and order-decreasing mappings of [ n ] .

Boundedness of Fourier integral operators on Fourier Lebesgue spaces and affine fibrations

Fabio Nicola (2010)

Studia Mathematica

Similarity:

We study Fourier integral operators of Hörmander’s type acting on the spaces L p ( d ) c o m p , 1 ≤ p ≤ ∞, of compactly supported distributions whose Fourier transform is in L p . We show that the sharp loss of derivatives for such an operator to be bounded on these spaces is related to the rank r of the Hessian of the phase Φ(x,η) with respect to the space variables x. Indeed, we show that operators of order m = -r|1/2-1/p| are bounded on L p ( d ) c o m p if the mapping x x Φ ( x , η ) is constant on the fibres, of codimension r,...

Restriction theorems for the Fourier transform to homogeneous polynomial surfaces in ℝ³

E. Ferreyra, T. Godoy, M. Urciuolo (2004)

Studia Mathematica

Similarity:

Let φ:ℝ² → ℝ be a homogeneous polynomial function of degree m ≥ 2, let Σ = (x,φ(x)): |x| ≤ 1 and let σ be the Borel measure on Σ defined by σ ( A ) = B χ A ( x , φ ( x ) ) d x where B is the unit open ball in ℝ² and dx denotes the Lebesgue measure on ℝ². We show that the composition of the Fourier transform in ℝ³ followed by restriction to Σ defines a bounded operator from L p ( ³ ) to L q ( Σ , d σ ) for certain p,q. For m ≥ 6 the results are sharp except for some border points.