Displaying similar documents to “Compactness criteria in function spaces”

Asymptotic behaviour of Besov norms via wavelet type basic expansions

Anna Kamont (2016)

Annales Polonici Mathematici

Similarity:

J. Bourgain, H. Brezis and P. Mironescu [in: J. L. Menaldi et al. (eds.), Optimal Control and Partial Differential Equations, IOS Press, Amsterdam, 2001, 439-455] proved the following asymptotic formula: if Ω d is a smooth bounded domain, 1 ≤ p < ∞ and f W 1 , p ( Ω ) , then l i m s 1 ( 1 - s ) Ω Ω ( | f ( x ) - f ( y ) | p ) / ( | | x - y | | d + s p ) d x d y = K Ω | f ( x ) | p d x , where K is a constant depending only on p and d. The double integral on the left-hand side of the above formula is an equivalent seminorm in the Besov space B p s , p ( Ω ) . The purpose of this paper is to obtain analogous asymptotic formulae...

Inequivalence of Wavelet Systems in L ( d ) and B V ( d )

Paweł Bechler (2005)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

Theorems stating sufficient conditions for the inequivalence of the d-variate Haar wavelet system and another wavelet system in the spaces L ( d ) and B V ( d ) are proved. These results are used to show that the Strömberg wavelet system and the system of continuous Daubechies wavelets with minimal supports are not equivalent to the Haar system in these spaces. A theorem stating that some systems of smooth Daubechies wavelets are not equivalent to the Haar system in L ( d ) is also shown.

Refinement type equations: sources and results

Rafał Kapica, Janusz Morawiec (2013)

Banach Center Publications

Similarity:

It has been proved recently that the two-direction refinement equation of the form f ( x ) = n c n , 1 f ( k x - n ) + n c n , - 1 f ( - k x - n ) can be used in wavelet theory for constructing two-direction wavelets, biorthogonal wavelets, wavelet packages, wavelet frames and others. The two-direction refinement equation generalizes the classical refinement equation f ( x ) = n c f ( k x - n ) , which has been used in many areas of mathematics with important applications. The following continuous extension of the classical refinement equation f ( x ) = c ( y ) f ( k x - y ) d y has also various interesting...

Good-λ inequalities for wavelets of compact support

Sarah V. Cook (2004)

Colloquium Mathematicae

Similarity:

For a wavelet ψ of compact support, we define a square function S w and a maximal function NΛ. We then obtain the L p equivalence of these functions for 0 < p < ∞. We show this equivalence by using good-λ inequalities.

Local means and wavelets in function spaces

Hans Triebel (2008)

Banach Center Publications

Similarity:

The paper deals with local means and wavelet bases in weighted and unweighted function spaces of type B p q s and F p q s on ℝⁿ and on ⁿ.

Function spaces with dominating mixed smoothness

Jan Vybiral

Similarity:

We study several techniques which are well known in the case of Besov and Triebel-Lizorkin spaces and extend them to spaces with dominating mixed smoothness. We use the ideas of Triebel to prove three important decomposition theorems. We deal with so-called atomic, subatomic and wavelet decompositions. All these theorems have much in common. Roughly speaking, they say that a function f belongs to some function space (say S p , q r ̅ A ) if, and only if, it can be decomposed as f ( x ) = ν m λ ν m a ν m ( x ) , convergence in S’, with...

Decomposition systems for function spaces

G. Kyriazis (2003)

Studia Mathematica

Similarity:

Let Θ : = θ I e : e E , I D be a decomposition system for L ( d ) indexed over D, the set of dyadic cubes in d , and a finite set E, and let Θ ̃ : = Θ ̃ I e : e E , I D be the corresponding dual functionals. That is, for every f L ( d ) , f = e E I D f , Θ ̃ I e θ I e . We study sufficient conditions on Θ,Θ̃ so that they constitute a decomposition system for Triebel-Lizorkin and Besov spaces. Moreover, these conditions allow us to characterize the membership of a distribution f in these spaces by the size of the coefficients f , Θ ̃ I e , e ∈ E, I ∈ D. Typical examples of such decomposition...

Embeddings of Besov-Morrey spaces on bounded domains

Dorothee D. Haroske, Leszek Skrzypczak (2013)

Studia Mathematica

Similarity:

We study embeddings of spaces of Besov-Morrey type, i d Ω : p , u , q s ( Ω ) p , u , q s ( Ω ) , where Ω d is a bounded domain, and obtain necessary and sufficient conditions for the continuity and compactness of i d Ω . This continues our earlier studies relating to the case of d . Moreover, we also characterise embeddings into the scale of L p spaces or into the space of bounded continuous functions.

Polar wavelets and associated Littlewood-Paley theory

Epperson Jay, Frazier Michael

Similarity:

Abstract We develop an almost orthogonal wavelet-type expansion in ℝ² which is adapted to polar coordinates. We start by defining a product Fourier-Hankel transform f̂ and proving a sampling formula for f such that f̂ is compactly supported. For general f, the sampling formula and a partition of unity lead to an identity of the form f = μ , k , m f , φ μ k m ψ μ k m , in which each function φ μ k m and ψ μ k m is concentrated near a certain annular sector, has compactly supported product Fourier-Hankel transform, and is smooth...

Haar wavelets on the Lebesgue spaces of local fields of positive characteristic

Biswaranjan Behera (2014)

Colloquium Mathematicae

Similarity:

We construct the Haar wavelets on a local field K of positive characteristic and show that the Haar wavelet system forms an unconditional basis for L p ( K ) , 1 < p < ∞. We also prove that this system, normalized in L p ( K ) , is a democratic basis of L p ( K ) . This also proves that the Haar system is a greedy basis of L p ( K ) for 1 < p < ∞.

Weighted embedding theorems for radial Besov and Triebel-Lizorkin spaces

Pablo L. De Nápoli, Irene Drelichman, Nicolas Saintier (2016)

Studia Mathematica

Similarity:

We study the continuity and compactness of embeddings for radial Besov and Triebel-Lizorkin spaces with weights in the Muckenhoupt class A . The main tool is a discretization in terms of an almost orthogonal wavelet expansion adapted to the radial situation.

Pointwise regularity associated with function spaces and multifractal analysis

Stéphane Jaffard (2006)

Banach Center Publications

Similarity:

The purpose of multifractal analysis of functions is to determine the Hausdorff dimensions of the sets of points where a function (or a distribution) f has a given pointwise regularity exponent H. This notion has many variants depending on the global hypotheses made on f; if f locally belongs to a Banach space E, then a family of pointwise regularity spaces C E α ( x ) are constructed, leading to a notion of pointwise regularity with respect to E; the case E = L corresponds to the usual Hölder regularity,...

Dunkl-Gabor transform and time-frequency concentration

Saifallah Ghobber (2015)

Czechoslovak Mathematical Journal

Similarity:

The aim of this paper is to prove two new uncertainty principles for the Dunkl-Gabor transform. The first of these results is a new version of Heisenberg’s uncertainty inequality which states that the Dunkl-Gabor transform of a nonzero function with respect to a nonzero radial window function cannot be time and frequency concentrated around zero. The second result is an analogue of Benedicks’ uncertainty principle which states that the Dunkl-Gabor transform of a nonzero function with...

On Clifford-type structures

Wiesław Królikowski

Similarity:

We study several techniques which are well known in the case of Besov and Triebel-Lizorkin spaces and extend them to spaces with dominating mixed smoothness. We use the ideas of Triebel to prove three important decomposition theorems. We deal with so-called atomic, subatomic and wavelet decompositions. All these theorems have much in common. Roughly speaking, they say that a function f belongs to some function space (say S p , q r ̅ A ) if, and only if, it can be decomposed as f ( x ) = ν m λ ν m a ν m ( x ) , convergence in S’, with...

A note on integer translates of a square integrable function on ℝ

Maciej Paluszyński (2010)

Colloquium Mathematicae

Similarity:

We consider the subspace of L²(ℝ) spanned by the integer shifts of one function ψ, and formulate a condition on the family ψ ( · - n ) n = - , which is equivalent to the weight function n = - | ψ ̂ ( · + n ) | ² being > 0 a.e.

Gabor meets Littlewood-Paley: Gabor expansions in L p ( d )

Karlheinz Gröchenig, Christopher Heil (2001)

Studia Mathematica

Similarity:

It is known that Gabor expansions do not converge unconditionally in L p and that L p cannot be characterized in terms of the magnitudes of Gabor coefficients. By using a combination of Littlewood-Paley and Gabor theory, we show that L p can nevertheless be characterized in terms of Gabor expansions, and that the partial sums of Gabor expansions converge in L p -norm.

Boundedness of sublinear operators in Triebel-Lizorkin spaces via atoms

Liguang Liu, Dachun Yang (2009)

Studia Mathematica

Similarity:

Let s ∈ ℝ, p ∈ (0,1] and q ∈ [p,∞). It is proved that a sublinear operator T uniquely extends to a bounded sublinear operator from the Triebel-Lizorkin space p , q s ( ) to a quasi-Banach space ℬ if and only if sup | | T ( a ) | | : a is an infinitely differentiable (p,q,s)-atom of p , q s ( ) < ∞, where the (p,q,s)-atom of p , q s ( ) is as defined by Han, Paluszyński and Weiss.

Regularity properties of commutators and B M O -Triebel-Lizorkin spaces

Abdellah Youssfi (1995)

Annales de l'institut Fourier

Similarity:

In this paper we consider the regularity problem for the commutators ( [ b , R k ] ) 1 k n where b is a locally integrable function and ( R j ) 1 j n are the Riesz transforms in the n -dimensional euclidean space n . More precisely, we prove that these commutators ( [ b , R k ] ) 1 k n are bounded from L p into the Besov space B ˙ p s , p for 1 &lt; p &lt; + and 0 &lt; s &lt; 1 if and only if b is in the B M O -Triebel-Lizorkin space F ˙ s , p . The reduction of our result to the case p = 2 gives in particular that the commutators ( [ b , R k ] ) 1 k n are bounded form L 2 into the Sobolev space H ˙ s if and only if b ...

On the existence of non-linear frames

Shah Jahan, Varinder Kumar, S.K. Kaushik (2017)

Archivum Mathematicum

Similarity:

A stronger version of the notion of frame in Banach space called Strong Retro Banach frame (SRBF) is defined and studied. It has been proved that if 𝒳 is a Banach space such that 𝒳 * has a SRBF, then 𝒳 has a Bi-Banach frame with some geometric property. Also, it has been proved that if a Banach space 𝒳 has an approximative Schauder frame, then 𝒳 * has a SRBF. Finally, the existence of a non-linear SRBF in the conjugate of a separable Banach space has been proved.

Limiting behaviour of intrinsic seminorms in fractional order Sobolev spaces

Rémi Arcangéli, Juan José Torrens (2013)

Studia Mathematica

Similarity:

We collect and extend results on the limit of σ 1 - k ( 1 - σ ) k | v | l + σ , p , Ω p as σ → 0⁺ or σ → 1¯, where Ω is ℝⁿ or a smooth bounded domain, k ∈ 0,1, l ∈ ℕ, p ∈ [1,∞), and | · | l + σ , p , Ω is the intrinsic seminorm of order l+σ in the Sobolev space W l + σ , p ( Ω ) . In general, the above limit is equal to c [ v ] p , where c and [·] are, respectively, a constant and a seminorm that we explicitly provide. The particular case p = 2 for Ω = ℝⁿ is also examined and the results are then proved by using the Fourier transform.

The Lebesgue constants for the Franklin orthogonal system

Z. Ciesielski, A. Kamont (2004)

Studia Mathematica

Similarity:

To each set of knots t i = i / 2 n for i = 0,...,2ν and t i = ( i - ν ) / n for i = 2ν + 1,..., n + ν, with 1 ≤ ν ≤ n, there corresponds the space ν , n of all piecewise linear and continuous functions on I = [0,1] with knots t i and the orthogonal projection P ν , n of L²(I) onto ν , n . The main result is l i m ( n - ν ) ν | | P ν , n | | = s u p ν , n : 1 ν n | | P ν , n | | = 2 + ( 2 - 3 ) ² . This shows that the Lebesgue constant for the Franklin orthogonal system is 2 + (2-√3)².