Displaying similar documents to “Extension and lifting of weakly continuous polynomials”

Weakly null sequences with upper estimates

Daniel Freeman (2008)

Studia Mathematica

Similarity:

We prove that if ( v i ) is a seminormalized basic sequence and X is a Banach space such that every normalized weakly null sequence in X has a subsequence that is dominated by ( v i ) , then there exists a uniform constant C ≥ 1 such that every normalized weakly null sequence in X has a subsequence that is C-dominated by ( v i ) . This extends a result of Knaust and Odell, who proved this for the cases in which ( v i ) is the standard basis for p or c₀.

Weak precompactness and property (V*) in spaces of compact operators

Ioana Ghenciu (2015)

Colloquium Mathematicae

Similarity:

We give sufficient conditions for subsets of compact operators to be weakly precompact. Let L w * ( E * , F ) (resp. K w * ( E * , F ) ) denote the set of all w* - w continuous (resp. w* - w continuous compact) operators from E* to F. We prove that if H is a subset of K w * ( E * , F ) such that H(x*) is relatively weakly compact for each x* ∈ E* and H*(y*) is weakly precompact for each y* ∈ F*, then H is weakly precompact. We also prove the following results: If E has property (wV*) and F has property (V*), then K w * ( E * , F ) has property (wV*). Suppose...

A Green's function for θ-incomplete polynomials

Joe Callaghan (2007)

Annales Polonici Mathematici

Similarity:

Let K be any subset of N . We define a pluricomplex Green’s function V K , θ for θ-incomplete polynomials. We establish properties of V K , θ analogous to those of the weighted pluricomplex Green’s function. When K is a regular compact subset of N , we show that every continuous function that can be approximated uniformly on K by θ-incomplete polynomials, must vanish on K s u p p ( d d c V K , θ ) N . We prove a version of Siciak’s theorem and a comparison theorem for θ-incomplete polynomials. We compute s u p p ( d d c V K , θ ) N when K is a compact...

Estimates for polynomials in the unit disk with varying constant terms

Stephan Ruscheweyh, Magdalena Wołoszkiewicz (2011)

Annales Universitatis Mariae Curie-Sklodowska, sectio A – Mathematica

Similarity:

Let · be the uniform norm in the unit disk. We study the quantities M n ( α ) : = inf ( z P ( z ) + α - α ) where the infimum is taken over all polynomials P of degree n - 1 with P ( z ) = 1 and α > 0 . In a recent paper by Fournier, Letac and Ruscheweyh (Math. Nachrichten 283 (2010), 193-199) it was shown that inf α > 0 M n ( α ) = 1 / n . We find the exact values of M n ( α ) and determine corresponding extremal polynomials. The method applied uses known cases of maximal ranges of polynomials.

Property ( 𝐰𝐋 ) and the reciprocal Dunford-Pettis property in projective tensor products

Ioana Ghenciu (2015)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

A Banach space X has the reciprocal Dunford-Pettis property ( R D P P ) if every completely continuous operator T from X to any Banach space Y is weakly compact. A Banach space X has the R D P P (resp. property ( w L ) ) if every L -subset of X * is relatively weakly compact (resp. weakly precompact). We prove that the projective tensor product X π Y has property ( w L ) when X has the R D P P , Y has property ( w L ) , and L ( X , Y * ) = K ( X , Y * ) .

L -limited-like properties on Banach spaces

Ioana Ghenciu (2023)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We study weakly precompact sets and operators. We show that an operator is weakly precompact if and only if its adjoint is pseudo weakly compact. We study Banach spaces with the p - L -limited * and the p -(SR * ) properties and characterize these classes of Banach spaces in terms of p - L -limited * and p -Right * subsets. The p - L -limited * property is studied in some spaces of operators.

The algebra of polynomials on the space of ultradifferentiable functions

Katarzyna Grasela (2010)

Banach Center Publications

Similarity:

We consider the space of ultradifferentiable functions with compact supports and the space of polynomials on . A description of the space ( ) of polynomial ultradistributions as a locally convex direct sum is given.

On asymptotically symmetric Banach spaces

M. Junge, D. Kutzarova, E. Odell (2006)

Studia Mathematica

Similarity:

A Banach space X is asymptotically symmetric (a.s.) if for some C < ∞, for all m ∈ ℕ, for all bounded sequences ( x j i ) j = 1 X , 1 ≤ i ≤ m, for all permutations σ of 1,...,m and all ultrafilters ₁,...,ₘ on ℕ, l i m n , . . . l i m n , | | i = 1 m x n i i | | C l i m n σ ( 1 ) , σ ( 1 ) . . . l i m n σ ( m ) , σ ( m ) | | i = 1 m x n i i | | . We investigate a.s. Banach spaces and several natural variations. X is weakly a.s. (w.a.s.) if the defining condition holds when restricted to weakly convergent sequences ( x j i ) j = 1 . Moreover, X is w.n.a.s. if we restrict the condition further to normalized weakly null sequences. If X is a.s. then...

Application of ( L ) sets to some classes of operators

Kamal El Fahri, Nabil Machrafi, Jawad H&amp;#039;michane, Aziz Elbour (2016)

Mathematica Bohemica

Similarity:

The paper contains some applications of the notion of Ł sets to several classes of operators on Banach lattices. In particular, we introduce and study the class of order ( L ) -Dunford-Pettis operators, that is, operators from a Banach space into a Banach lattice whose adjoint maps order bounded subsets to an ( L ) sets. As a sequence characterization of such operators, we see that an operator T : X E from a Banach space into a Banach lattice is order Ł -Dunford-Pettis, if and only if | T ( x n ) | 0 for σ ( E , E ' ) for every...

Characterizing matrices with 𝐗 -simple image eigenspace in max-min semiring

Ján Plavka, Sergeĭ Sergeev (2016)

Kybernetika

Similarity:

A matrix A is said to have 𝐗 -simple image eigenspace if any eigenvector x belonging to the interval 𝐗 = { x : x ̲ x x ¯ } is the unique solution of the system A y = x in 𝐗 . The main result of this paper is a combinatorial characterization of such matrices in the linear algebra over max-min (fuzzy) semiring. The characterized property is related to and motivated by the general development of tropical linear algebra and interval analysis, as well as the notions of simple image set and weak robustness (or weak stability)...

On the lattice of polynomials with integer coefficients: the covering radius in L p ( 0 , 1 )

Wojciech Banaszczyk, Artur Lipnicki (2015)

Annales Polonici Mathematici

Similarity:

The paper deals with the approximation by polynomials with integer coefficients in L p ( 0 , 1 ) , 1 ≤ p ≤ ∞. Let P n , r be the space of polynomials of degree ≤ n which are divisible by the polynomial x r ( 1 - x ) r , r ≥ 0, and let P n , r P n , r be the set of polynomials with integer coefficients. Let μ ( P n , r ; L p ) be the maximal distance of elements of P n , r from P n , r in L p ( 0 , 1 ) . We give rather precise quantitative estimates of μ ( P n , r ; L ) for n ≳ 6r. Then we obtain similar, somewhat less precise, estimates of μ ( P n , r ; L p ) for p ≠ 2. It follows that μ ( P n , r ; L p ) n - 2 r - 2 / p as n → ∞. The results...

A note on weakly-supplemented subgroups of finite groups

Hong Pan (2018)

Czechoslovak Mathematical Journal

Similarity:

A subgroup H of a finite group G is weakly-supplemented in G if there exists a proper subgroup K of G such that G = H K . In the paper, we extend one main result of Kong and Liu (2014).

M-ideals of homogeneous polynomials

Verónica Dimant (2011)

Studia Mathematica

Similarity:

We study the problem of whether w ( E ) , the space of n-homogeneous polynomials which are weakly continuous on bounded sets, is an M-ideal in the space (ⁿE) of continuous n-homogeneous polynomials. We obtain conditions that ensure this fact and present some examples. We prove that if w ( E ) is an M-ideal in (ⁿE), then w ( E ) coincides with w 0 ( E ) (n-homogeneous polynomials that are weakly continuous on bounded sets at 0). We introduce a polynomial version of property (M) and derive that if w ( E ) = w 0 ( E ) and (E) is an...

Limited p -converging operators and relation with some geometric properties of Banach spaces

Mohammad B. Dehghani, Seyed M. Moshtaghioun (2021)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

By using the concepts of limited p -converging operators between two Banach spaces X and Y , L p -sets and L p -limited sets in Banach spaces, we obtain some characterizations of these concepts relative to some well-known geometric properties of Banach spaces, such as * -Dunford–Pettis property of order p and Pelczyński’s property of order p , 1 p < .

Characterization of functions whose forward differences are exponential polynomials

J. M. Almira (2017)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Given { h 1 , , h t } a finite subset of d , we study the continuous complex valued functions and the Schwartz complex valued distributions f defined on d with the property that the forward differences Δ h k m k f are (in distributional sense) continuous exponential polynomials for some natural numbers m 1 , , m t .

A note on weakly-supplemented subgroups and the solvability of finite groups

Xin Liang, Baiyan Xu (2022)

Czechoslovak Mathematical Journal

Similarity:

Suppose that G is a finite group and H is a subgroup of G . The subgroup H is said to be weakly-supplemented in G if there exists a proper subgroup K of G such that G = H K . In this note, by using the weakly-supplemented subgroups, we point out several mistakes in the proof of Theorem 1.2 of Q. Zhou (2019) and give a counterexample.

The multiplicity of the zero at 1 of polynomials with constrained coefficients

Peter Borwein, Tamás Erdélyi, Géza Kós (2013)

Acta Arithmetica

Similarity:

For n ∈ ℕ, L > 0, and p ≥ 1 let κ p ( n , L ) be the largest possible value of k for which there is a polynomial P ≠ 0 of the form P ( x ) = j = 0 n a j x j , | a 0 | L ( j = 1 n | a j | p 1/p , aj ∈ ℂ , such that ( x - 1 ) k divides P(x). For n ∈ ℕ and L > 0 let κ ( n , L ) be the largest possible value of k for which there is a polynomial P ≠ 0 of the form P ( x ) = j = 0 n a j x j , | a 0 | L m a x 1 j n | a j | , a j , such that ( x - 1 ) k divides P(x). We prove that there are absolute constants c₁ > 0 and c₂ > 0 such that c 1 ( n / L ) - 1 κ ( n , L ) c 2 ( n / L ) for every L ≥ 1. This complements an earlier result of the authors valid for every n ∈ ℕ and L ∈...

The factorization of f ( x ) x n + g ( x ) with f ( x ) monic and of degree 2 .

Joshua Harrington, Andrew Vincent, Daniel White (2013)

Journal de Théorie des Nombres de Bordeaux

Similarity:

In this paper we investigate the factorization of the polynomials f ( x ) x n + g ( x ) [ x ] in the special case where f ( x ) is a monic quadratic polynomial with negative discriminant. We also mention similar results in the case that f ( x ) is monic and linear.