Displaying similar documents to “Spectral decompositions, ergodic averages, and the Hilbert transform”

Spectral theory and operator ergodic theory on super-reflexive Banach spaces

Earl Berkson (2010)

Studia Mathematica

Similarity:

On reflexive spaces trigonometrically well-bounded operators have an operator-ergodic-theory characterization as the invertible operators U such that s u p n , z | | 0 < | k | n ( 1 - | k | / ( n + 1 ) ) k - 1 z k U k | | < . (*) Trigonometrically well-bounded operators permeate many settings of modern analysis, and this note highlights the advances in both their spectral theory and operator ergodic theory made possible by a recent rekindling of interest in the R. C. James inequalities for super-reflexive spaces. When the James inequalities are combined with...

Ergodic theorems in fully symmetric spaces of τ-measurable operators

Vladimir Chilin, Semyon Litvinov (2015)

Studia Mathematica

Similarity:

Junge and Xu (2007), employing the technique of noncommutative interpolation, established a maximal ergodic theorem in noncommutative L p -spaces, 1 < p < ∞, and derived corresponding maximal ergodic inequalities and individual ergodic theorems. In this article, we derive maximal ergodic inequalities in noncommutative L p -spaces directly from the results of Yeadon (1977) and apply them to prove corresponding individual and Besicovitch weighted ergodic theorems. Then we extend these...

Pointwise convergence for subsequences of weighted averages

Patrick LaVictoire (2011)

Colloquium Mathematicae

Similarity:

We prove that if μₙ are probability measures on ℤ such that μ̂ₙ converges to 0 uniformly on every compact subset of (0,1), then there exists a subsequence n k such that the weighted ergodic averages corresponding to μ n k satisfy a pointwise ergodic theorem in L¹. We further discuss the relationship between Fourier decay and pointwise ergodic theorems for subsequences, considering in particular the averages along n² + ⌊ρ(n)⌋ for a slowly growing function ρ. Under some monotonicity assumptions,...

Ergodic transforms associated to general averages

H. Aimar, A. L. Bernardis, F. J. Martín-Reyes (2010)

Studia Mathematica

Similarity:

Jones and Rosenblatt started the study of an ergodic transform which is analogous to the martingale transform. In this paper we present a unified treatment of the ergodic transforms associated to positive groups induced by nonsingular flows and to general means which include the usual averages, Cesàro-α averages and Abel means. We prove the boundedness in L p , 1 < p < ∞, of the maximal ergodic transforms assuming that the semigroup is Cesàro bounded in L p . For p = 1 we find that the...

JOP's counting function and Jones' square function

Karin Reinhold (2006)

Studia Mathematica

Similarity:

We study a class of square functions in a general framework with applications to a variety of situations: samples along subsequences, averages of d actions and of positive L¹ contractions. We also study the relationship between a counting function first introduced by Jamison, Orey and Pruitt, in a variety of situations, and the corresponding ergodic averages. We show that the maximal counting function is not dominated by the square functions.

Hamiltonian loops from the ergodic point of view

Leonid Polterovich (1999)

Journal of the European Mathematical Society

Similarity:

Let G be the group of Hamiltonian diffeomorphisms of a closed symplectic manifold Y . A loop h : S 1 G is called strictly ergodic if for some irrational number the associated skew product map T : S 1 × Y S 1 × Y defined by T ( t , y ) = ( t + α ; h ( t ) y ) is strictly ergodic. In the present paper we address the following question. Which elements of the fundamental group of G can be represented by strictly ergodic loops? We prove existence of contractible strictly ergodic loops for a wide class of symplectic manifolds (for instance for simply...

Mixing via families for measure preserving transformations

Rui Kuang, Xiangdong Ye (2008)

Colloquium Mathematicae

Similarity:

In topological dynamics a theory of recurrence properties via (Furstenberg) families was established in the recent years. In the current paper we aim to establish a corresponding theory of ergodicity via families in measurable dynamical systems (MDS). For a family ℱ (of subsets of ℤ₊) and a MDS (X,,μ,T), several notions of ergodicity related to ℱ are introduced, and characterized via the weak topology in the induced Hilbert space L²(μ). T is ℱ-convergence ergodic of order k if for any...

Almost everywhere convergence of generalized ergodic transforms for invertible power-bounded operators in L p

Christophe Cuny (2011)

Colloquium Mathematicae

Similarity:

We show that some results of Gaposhkin about a.e. convergence of series associated to a unitary operator U acting on L²(X,Σ,μ) (μ is a σ-finite measure) may be extended to the case where U is an invertible power-bounded operator acting on L p ( X , Σ , μ ) , p > 1. The proofs make use of the spectral integration initiated by Berkson-Gillespie and, more specifically, of recent results of the author.

The one-sided ergodic Hilbert transform in Banach spaces

Guy Cohen, Christophe Cuny, Michael Lin (2010)

Studia Mathematica

Similarity:

Let T be a power-bounded operator on a (real or complex) Banach space. We study the convergence of the one-sided ergodic Hilbert transform l i m n k = 1 n ( T k x ) / k . We prove that weak and strong convergence are equivalent, and in a reflexive space also s u p n | | k = 1 n ( T k x ) / k | | < is equivalent to the convergence. We also show that - k = 1 ( T k ) / k (which converges on (I-T)X) is precisely the infinitesimal generator of the semigroup ( I - T ) | ( I - T ) X ¯ r .

Multiparameter admissible superadditive processes

Doğan Çömez (2005)

Colloquium Mathematicae

Similarity:

In this article some properties of Markovian mean ergodic operators are studied. As an application of the tools developed, and using the admissibility feature, a “reduction of order” technique for multiparameter admissible superadditive processes is obtained. This technique is later utilized to obtain a.e. convergence of averages n - 2 i , j = 0 n - 1 f ( i , j ) as well as their weighted version.

Positive L¹ operators associated with nonsingular mappings and an example of E. Hille

Isaac Kornfeld, Wojciech Kosek (2003)

Colloquium Mathematicae

Similarity:

E. Hille [Hi1] gave an example of an operator in L¹[0,1] satisfying the mean ergodic theorem (MET) and such that supₙ||Tⁿ|| = ∞ (actually, | | T | | n 1 / 4 ). This was the first example of a non-power bounded mean ergodic L¹ operator. In this note, the possible rates of growth (in n) of the norms of Tⁿ for such operators are studied. We show that, for every γ > 0, there are positive L¹ operators T satisfying the MET with l i m n | | T | | / n 1 - γ = . I n t h e c l a s s o f p o s i t i v e o p e r a t o r s t h e s e e x a m p l e s a r e t h e b e s t p o s s i b l e i n t h e s e n s e t h a t f o r e v e r y s u c h o p e r a t o r T t h e r e e x i s t s a γ > 0 s u c h t h a t lim supn→ ∞ ||Tⁿ||/n1-γ₀ = 0 . A class of numerical sequences αₙ, intimately...

Example of a mean ergodic L¹ operator with the linear rate of growth

Wojciech Kosek (2011)

Colloquium Mathematicae

Similarity:

The rate of growth of an operator T satisfying the mean ergodic theorem (MET) cannot be faster than linear. It was recently shown (Kornfeld-Kosek, Colloq. Math. 98 (2003)) that for every γ > 0, there are positive L¹[0,1] operators T satisfying MET with l i m n | | T | | / n 1 - γ = . In the class of positive L¹ operators this is the most one can hope for in the sense that for every such operator T, there exists a γ₀ > 0 such that l i m s u p | | T | | / n 1 - γ = 0 . In this note we construct an example of a nonpositive L¹ operator with the...

New spectral multiplicities for ergodic actions

Anton V. Solomko (2012)

Studia Mathematica

Similarity:

Let G be a locally compact second countable Abelian group. Given a measure preserving action T of G on a standard probability space (X,μ), let ℳ (T) denote the set of essential values of the spectral multiplicity function of the Koopman representation U T of G defined in L²(X,μ) ⊖ ℂ by U T ( g ) f : = f T - g . If G is either a discrete countable Abelian group or ℝⁿ, n ≥ 1, it is shown that the sets of the form p,q,pq, p,q,r,pq,pr,qr,pqr etc. or any multiplicative (and additive) subsemigroup of ℕ are realizable...

Generalizations of Cesàro means and poles of the resolvent

Laura Burlando (2004)

Studia Mathematica

Similarity:

An improvement of the generalization-obtained in a previous article [Bu1] by the author-of the uniform ergodic theorem to poles of arbitrary order is derived. In order to answer two natural questions suggested by this result, two examples are also given. Namely, two bounded linear operators T and A are constructed such that n - 2 T converges uniformly to zero, the sum of the range and the kernel of 1-T being closed, and n - 3 k = 0 n - 1 A k converges uniformly, the sum of the range of 1-A and the kernel of (1-A)²...

Norm convergence of some power series of operators in L p with applications in ergodic theory

Christophe Cuny (2010)

Studia Mathematica

Similarity:

Let X be a closed subspace of L p ( μ ) , where μ is an arbitrary measure and 1 < p < ∞. Let U be an invertible operator on X such that s u p n | | U | | < . Motivated by applications in ergodic theory, we obtain (optimal) conditions for the convergence of series like n 1 ( U f ) / n 1 - α , 0 ≤ α < 1, in terms of | | f + + U n - 1 f | | p , generalizing results for unitary (or normal) operators in L²(μ). The proofs make use of the spectral integration initiated by Berkson and Gillespie and, more particularly, of results from a paper by Berkson-Bourgain-Gillespie. ...

On ergodicity for operators with bounded resolvent in Banach spaces

Kirsti Mattila (2011)

Studia Mathematica

Similarity:

We prove results on ergodicity, i.e. on the property that the space is a direct sum of the kernel of an operator and the closure of its range, for closed linear operators A such that | | α ( α - A ) - 1 | | is uniformly bounded for all α > 0. We consider operators on Banach spaces which have the property that the space is complemented in its second dual space by a projection P. Results on ergodicity are obtained under a norm condition ||I - 2P|| ||I - Q|| < 2 where Q is a projection depending on the...

Infinite measure preserving flows with infinite ergodic index

Alexandre I. Danilenko, Anton V. Solomko (2009)

Colloquium Mathematicae

Similarity:

We construct a rank-one infinite measure preserving flow ( T r ) r such that for each p > 0, the “diagonal” flow ( T r × × T r ) r ( p t i m e s ) on the product space is ergodic.

Non-Typical Points for β-Shifts

David Färm, Tomas Persson (2013)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

We study sets of non-typical points under the map f β β x mod 1 for non-integer β and extend our results from [Fund. Math. 209 (2010)] in several directions. In particular, we prove that sets of points whose forward orbit avoid certain Cantor sets, and the set of points for which ergodic averages diverge, have large intersection properties. We observe that the technical condition β > 1.541 found in the above paper can be removed.

Marcinkiewicz multipliers of higher variation and summability of operator-valued Fourier series

Earl Berkson (2014)

Studia Mathematica

Similarity:

Let f V r ( ) r ( ) , where, for 1 ≤ r < ∞, V r ( ) (resp., r ( ) ) denotes the class of functions (resp., bounded functions) g: → ℂ such that g has bounded r-variation (resp., uniformly bounded r-variations) on (resp., on the dyadic arcs of ). In the author’s recent article [New York J. Math. 17 (2011)] it was shown that if is a super-reflexive space, and E(·): ℝ → () is the spectral decomposition of a trigonometrically well-bounded operator U ∈ (), then over a suitable non-void open interval of r-values,...

On the (C,α) Cesàro bounded operators

Elmouloudi Ed-dari (2004)

Studia Mathematica

Similarity:

For a given linear operator T in a complex Banach space X and α ∈ ℂ with ℜ (α) > 0, we define the nth Cesàro mean of order α of the powers of T by M α = ( A α ) - 1 k = 0 n A n - k α - 1 T k . For α = 1, we find M ¹ = ( n + 1 ) - 1 k = 0 n T k , the usual Cesàro mean. We give necessary and sufficient conditions for a (C,α) bounded operator to be (C,α) strongly (weakly) ergodic.

Vector-valued ergodic theorems for multiparameter Additive processes II

Ryotaro Sato (2003)

Colloquium Mathematicae

Similarity:

Previously we obtained stochastic and pointwise ergodic theorems for a continuous d-parameter additive process F in L₁((Ω,Σ,μ);X), where X is a reflexive Banach space, under the condition that F is bounded. In this paper we improve the previous results by considering the weaker condition that the function W ( · ) = e s s s u p | | F ( I ) ( · ) | | : I [ 0 , 1 ) d is integrable on Ω.

Dispersing cocycles and mixing flows under functions

Klaus Schmidt (2002)

Fundamenta Mathematicae

Similarity:

Let T be a measure-preserving and mixing action of a countable abelian group G on a probability space (X,,μ) and A a locally compact second countable abelian group. A cocycle c: G × X → A for T disperses if l i m g c ( g , · ) - α ( g ) = in measure for every map α: G → A. We prove that such a cocycle c does not disperse if and only if there exists a compact subgroup A₀ ⊂ A such that the composition θ ∘ c: G × X → A/A₀ of c with the quotient map θ: A → A/A₀ is trivial (i.e. cohomologous to a homomorphism η: G → A/A₀). This...

Ergodic theorems for subadditive superstationary families of random sets with values in Banach spaces

G. Krupa (1998)

Studia Mathematica

Similarity:

Under different compactness assumptions pointwise and mean ergodic theorems for subadditive superstationary families of random sets whose values are weakly (or strongly) compact convex subsets of a separable Banach space are presented. The results generalize those of [14], where random sets in d are considered. Techniques used here are inspired by [3].

Vector-valued ergodic theorems for multiparameter additive processes

Ryotaro Sato (1999)

Colloquium Mathematicae

Similarity:

Let X be a reflexive Banach space and (Ω,Σ,μ) be a σ-finite measure space. Let d ≥ 1 be an integer and T=T(u):u=( u 1 , ... , u d ) , u i ≥ 0, 1 ≤ i ≤ d be a strongly measurable d-parameter semigroup of linear contractions on L 1 ((Ω,Σ,μ);X). We assume that to each T(u) there corresponds a positive linear contraction P(u) defined on L 1 ((Ω,Σ,μ);ℝ) with the property that ∥ T(u)f(ω)∥ ≤ P(u)∥f(·)∥(ω) almost everywhere on Ω for all f ∈ L 1 ((Ω,Σ,μ);X). We then prove stochastic and pointwise ergodic theorems...

Decay of covariances, uniqueness of ergodic component and scaling limit for a class of φ systems with non-convex potential

Codina Cotar, Jean-Dominique Deuschel (2012)

Annales de l'I.H.P. Probabilités et statistiques

Similarity:

We consider a gradient interface model on the lattice with interaction potential which is a non-convex perturbation of a convex potential. Using a technique which decouples the neighboring vertices into even and odd vertices, we show for a class of non-convex potentials: the uniqueness of ergodic component for φ -Gibbs measures, the decay of covariances, the scaling limit and the strict convexity of the surface tension.

Pointwise ergodic theorems in Lorentz spaces L(p,q) for null preserving transformations

Ryotaro Sato (1995)

Studia Mathematica

Similarity:

Let (X,ℱ,µ) be a finite measure space and τ a null preserving transformation on (X,ℱ,µ). Functions in Lorentz spaces L(p,q) associated with the measure μ are considered for pointwise ergodic theorems. Necessary and sufficient conditions are given in order that for any f in L(p,q) the ergodic average n - 1 i = 0 n - 1 f τ i ( x ) converges almost everywhere to a function f* in L ( p 1 , q 1 ] , where (pq) and ( p 1 , q 1 ] are assumed to be in the set ( r , s ) : r = s = 1 , o r 1 < r < a n d 1 s , o r r = s = . Results due to C. Ryll-Nardzewski, S. Gładysz, and I. Assani and J. Woś are generalized...

Ergodic averages with deterministic weights

Fabien Durand, Dominique Schneider (2002)

Annales de l’institut Fourier

Similarity:

We study the convergence of the ergodic averages 1 N k = 0 N - 1 θ ( k ) f T u k where ( θ ( k ) ) k is a bounded sequence and ( u k ) k a strictly increasing sequence of integers such that Sup α | k = 0 N - 1 θ ( k ) exp ( 2 i π α u k ) | = O ( N δ ) for some δ &lt; 1 . Moreover we give explicit such sequences θ and u and we investigate in particular the case where θ is a q -multiplicative sequence.

Large sets of integers and hierarchy of mixing properties of measure preserving systems

Vitaly Bergelson, Tomasz Downarowicz (2008)

Colloquium Mathematicae

Similarity:

We consider a hierarchy of notions of largeness for subsets of ℤ (such as thick sets, syndetic sets, IP-sets, etc., as well as some new classes) and study them in conjunction with recurrence in topological dynamics and ergodic theory. We use topological dynamics and topological algebra in βℤ to establish connections between various notions of largeness and apply those results to the study of the sets R A , B ε = n : μ ( A T B ) > μ ( A ) μ ( B ) - ε of times of “fat intersection”. Among other things we show that the sets R A , B ε allow one...

Examples of minimal diffeomorphisms on 𝕋² semiconjugate to an ergodic translation

Alejandro Passeggi, Martín Sambarino (2013)

Fundamenta Mathematicae

Similarity:

We prove that for every ϵ > 0 there exists a minimal diffeomorphism f: ² → ² of class C 3 - ϵ and semiconjugate to an ergodic translation with the following properties: zero entropy, sensitivity to initial conditions, and Li-Yorke chaos. These examples are obtained through the holonomy of the unstable foliation of Mañé’s example of a derived-from-Anosov diffeomorphism on ³.