Displaying similar documents to “Blow-up of solutions for the Kirchhoff equation of q-Laplacian type with nonlinear dissipation”

Blow-up of the solution to the initial-value problem in nonlinear three-dimensional hyperelasticity

J. A. Gawinecki, P. Kacprzyk (2008)

Applicationes Mathematicae

Similarity:

We consider the initial value problem for the nonlinear partial differential equations describing the motion of an inhomogeneous and anisotropic hyperelastic medium. We assume that the stored energy function of the hyperelastic material is a function of the point x and the nonlinear Green-St. Venant strain tensor e j k . Moreover, we assume that the stored energy function is C with respect to x and e j k . In our description we assume that Piola-Kirchhoff’s stress tensor p j k depends on the tensor...

On the principal eigencurve of the p-Laplacian related to the Sobolev trace embedding

Abdelouahed El Khalil, Mohammed Ouanan (2005)

Applicationes Mathematicae

Similarity:

We prove that for any λ ∈ ℝ, there is an increasing sequence of eigenvalues μₙ(λ) for the nonlinear boundary value problem ⎧ Δ u = | u | p - 2 u in Ω, ⎨ ⎩ | u | p - 2 u / ν = λ ϱ ( x ) | u | p - 2 u + μ | u | p - 2 u on crtial ∂Ω and we show that the first one μ₁(λ) is simple and isolated; we also prove some results about variations of the density ϱ and the continuity with respect to the parameter λ.

Single-point blow-up for a semilinear parabolic system

Ph. Souplet (2009)

Journal of the European Mathematical Society

Similarity:

We consider positive solutions of the system u t - Δ u = v p ; v t - Δ v = u q in a ball or in the whole space, with p , q > 1 . Relatively little is known on the blow-up set for semilinear parabolic systems and, up to now, no result was available for this basic system except for the very special case p = q . Here we prove single-point blow-up for a large class of radial decreasing solutions. This in particular solves a problem left open in a paper of A. Friedman and Y. Giga (1987). We also obtain lower pointwise estimates for...

Boundary blow-up solutions for a cooperative system involving the p-Laplacian

Li Chen, Yujuan Chen, Dang Luo (2013)

Annales Polonici Mathematici

Similarity:

We study necessary and sufficient conditions for the existence of nonnegative boundary blow-up solutions to the cooperative system Δ p u = g ( u - α v ) , Δ p v = f ( v - β u ) in a smooth bounded domain of N , where Δ p is the p-Laplacian operator defined by Δ p u = d i v ( | u | p - 2 u ) with p > 1, f and g are nondecreasing, nonnegative C¹ functions, and α and β are two positive parameters. The asymptotic behavior of solutions near the boundary is obtained and we get a uniqueness result for p = 2.

The analysis of blow-up solutions to a semilinear parabolic system with weighted localized terms

Haihua Lu, Feng Wang, Qiaoyun Jiang (2011)

Annales Polonici Mathematici

Similarity:

This paper deals with blow-up properties of solutions to a semilinear parabolic system with weighted localized terms, subject to the homogeneous Dirichlet boundary conditions. We investigate the influence of the three factors: localized sources u p ( x , t ) , vⁿ(x₀,t), local sources u m ( x , t ) , v q ( x , t ) , and weight functions a(x),b(x), on the asymptotic behavior of solutions. We obtain the uniform blow-up profiles not only for the cases m,q ≤ 1 or m,q > 1, but also for m > 1 q < 1 or m < 1 q >...

Long-time asymptotics for the nonlinear heat equation with a fractional Laplacian in a ball

Vladimir Varlamov (2000)

Studia Mathematica

Similarity:

The nonlinear heat equation with a fractional Laplacian [ u t + ( - Δ ) α / 2 u = u 2 , 0 < α 2 ] , is considered in a unit ball B . Homogeneous boundary conditions and small initial conditions are examined. For 3/2 + ε₁ ≤ α ≤ 2, where ε₁ > 0 is small, the global-in-time mild solution from the space C ( [ 0 , ) , H κ ( B ) ) with κ < α - 1/2 is constructed in the form of an eigenfunction expansion series. The uniqueness is proved for 0 < κ < α - 1/2, and the higher-order long-time asymptotics is calculated.

On the radius of spatial analyticity for the higher order nonlinear dispersive equation

Aissa Boukarou, Kaddour Guerbati, Khaled Zennir (2022)

Mathematica Bohemica

Similarity:

In this work, using bilinear estimates in Bourgain type spaces, we prove the local existence of a solution to a higher order nonlinear dispersive equation on the line for analytic initial data u 0 . The analytic initial data can be extended as holomorphic functions in a strip around the x -axis. By Gevrey approximate conservation law, we prove the existence of the global solutions, which improve earlier results of Z. Zhang, Z. Liu, M. Sun, S. Li, (2019).

Asymptotic integration of differential equations with singular p -Laplacian

Milan Medveď, Eva Pekárková (2016)

Archivum Mathematicum

Similarity:

In this paper we deal with the problem of asymptotic integration of nonlinear differential equations with p - Laplacian, where 1 < p < 2 . We prove sufficient conditions under which all solutions of an equation from this class are converging to a linear function as t .

Total blow-up of a quasilinear heat equation with slow-diffusion for non-decaying initial data

Amy Poh Ai Ling, Masahiko Shimojō (2019)

Mathematica Bohemica

Similarity:

We consider solutions of quasilinear equations u t = Δ u m + u p in N with the initial data u 0 satisfying 0 < u 0 < M and lim | x | u 0 ( x ) = M for some constant M > 0 . It is known that if 0 < m < p with p > 1 , the blow-up set is empty. We find solutions u that blow up throughout N when m > p > 1 .

Multiplicity of positive solutions for a nonlinear fourth order equation

D. R. Dunninger (2001)

Annales Polonici Mathematici

Similarity:

We study the existence and multiplicity of positive solutions of the nonlinear fourth order problem ⎧ u ( 4 ) = λ f ( u ) in (0,1), ⎨ ⎩u(0) = a ≥ 0, u’(0) = a’ ≥ 0, u(1) = b ≥ 0, u(1) = -b’ ≤ 0 The methods employed are upper and lower solutions and degree theory arguments.

Divergent solutions to the 5D Hartree equations

Daomin Cao, Qing Guo (2011)

Colloquium Mathematicae

Similarity:

We consider the Cauchy problem for the focusing Hartree equation i u t + Δ u + ( | · | - 3 | u | ² ) u = 0 in ℝ⁵ with initial data in H¹, and study the divergence property of infinite-variance and nonradial solutions. For the ground state solution of - Q + Δ Q + ( | · | - 3 | Q | ² ) Q = 0 in ℝ⁵, we prove that if u₀ ∈ H¹ satisfies M(u₀)E(u₀) < M(Q)E(Q) and ||∇u₀||₂||u₀||₂ > ||∇Q||₂||Q||₂, then the corresponding solution u(t) either blows up in finite forward time, or exists globally for positive time and there exists a time sequence tₙ → ∞ such that ||∇u(tₙ)||₂...

Universality of blow-up profile for small radial type II blow-up solutions of the energy-critical wave equation

Thomas Duyckaerts, Carlos E. Kenig, Frank Merle (2011)

Journal of the European Mathematical Society

Similarity:

Consider the energy-critical focusing wave equation on the Euclidian space. A blow-up type II solution of this equation is a solution which has finite time of existence but stays bounded in the energy space. The aim of this work is to exhibit universal properties of such solutions. Let W be the unique radial positive stationary solution of the equation. Our main result is that in dimension 3, under an appropriate smallness assumption, any type II blow-up radial solution is essentially...

Blow up for a completely coupled Fujita type reaction-diffusion system

Noureddine Igbida, Mokhtar Kirane (2002)

Colloquium Mathematicae

Similarity:

This paper provides blow up results of Fujita type for a reaction-diffusion system of 3 equations in the form u - Δ ( a 11 u ) = h ( t , x ) | v | p , v - Δ ( a 21 u ) - Δ ( a 22 v ) = k ( t , x ) | w | q , w - Δ ( a 31 u ) - Δ ( a 32 v ) - Δ ( a 33 w ) = l ( t , x ) | u | r , for x N , t > 0, p > 0, q > 0, r > 0, a i j = a i j ( t , x , u , v ) , under initial conditions u(0,x) = u₀(x), v(0,x) = v₀(x), w(0,x) = w₀(x) for x N , where u₀, v₀, w₀ are nonnegative, continuous and bounded functions. Subject to conditions on dependence on the parameters p, q, r, N and the growth of the functions h, k, l at infinity, we prove finite blow up time for every solution of the...

Existence of positive solutions for a nonlinear fourth order boundary value problem

Ruyun Ma (2003)

Annales Polonici Mathematici

Similarity:

We study the existence of positive solutions of the nonlinear fourth order problem u ( 4 ) ( x ) = λ a ( x ) f ( u ( x ) ) , u(0) = u’(0) = u”(1) = u”’(1) = 0, where a: [0,1] → ℝ may change sign, f(0) < 0, and λ < 0 is sufficiently small. Our approach is based on the Leray-Schauder fixed point theorem.

Solvability for semilinear PDE with multiple characteristics

Alessandro Oliaro, Luigi Rodino (2003)

Banach Center Publications

Similarity:

We prove local solvability in Gevrey spaces for a class of semilinear partial differential equations. The linear part admits characteristics of multiplicity k ≥ 2 and data are fixed in G σ , 1 < σ < k/(k-1). The nonlinearity, containing derivatives of lower order, is assumed of class G σ with respect to all variables.

Some Remarks on Nonlinear Composition Operators in Spaces of Differentiable Functions

J. Appell, Z. Jesús, O. Mejía (2011)

Bollettino dell'Unione Matematica Italiana

Similarity:

In this note we study the nonlinear composition operator f g f in various spaces of differentiable functions over an interval. It turns out that this operator is always bounded in the corresponding norm, whenever it maps such a space into itself, but continuous only in exceptional cases.

Existence results for a class of nonlinear parabolic equations with two lower order terms

Ahmed Aberqi, Jaouad Bennouna, M. Hammoumi, Mounir Mekkour, Ahmed Youssfi (2014)

Applicationes Mathematicae

Similarity:

We investigate the existence of renormalized solutions for some nonlinear parabolic problems associated to equations of the form ⎧ ( e β u - 1 ) / t - d i v ( | u | p - 2 u ) + d i v ( c ( x , t ) | u | s - 1 u ) + b ( x , t ) | u | r = f in Q = Ω×(0,T), ⎨ u(x,t) = 0 on ∂Ω ×(0,T), ⎩ ( e β u - 1 ) ( x , 0 ) = ( e β u - 1 ) ( x ) in Ω. with s = (N+2)/(N+p) (p-1), c ( x , t ) ( L τ ( Q T ) ) N , τ = (N+p)/(p-1), r = (N(p-1) + p)/(N+2), b ( x , t ) L N + 2 , 1 ( Q T ) and f ∈ L¹(Q).

Self-similar solutions in reaction-diffusion systems

Joanna Rencławowicz (2003)

Banach Center Publications

Similarity:

In this paper we examine self-similar solutions to the system u i t - d i Δ u i = k = 1 m u k p k i , i = 1,…,m, x N , t > 0, u i ( 0 , x ) = u 0 i ( x ) , i = 1,…,m, x N , where m > 1 and p k i > 0 , to describe asymptotics near the blow up point.

A new look at an old comparison theorem

Jaroslav Jaroš (2021)

Archivum Mathematicum

Similarity:

We present an integral comparison theorem which guarantees the global existence of a solution of the generalized Riccati equation on the given interval [ a , b ) when it is known that certain majorant Riccati equation has a global solution on [ a , b ) .

Three solutions for a nonlinear Neumann boundary value problem

Najib Tsouli, Omar Chakrone, Omar Darhouche, Mostafa Rahmani (2014)

Applicationes Mathematicae

Similarity:

The aim of this paper is to establish the existence of at least three solutions for the nonlinear Neumann boundary-value problem involving the p(x)-Laplacian of the form - Δ p ( x ) u + a ( x ) | u | p ( x ) - 2 u = μ g ( x , u ) in Ω, | u | p ( x ) - 2 u / ν = λ f ( x , u ) on ∂Ω. Our technical approach is based on the three critical points theorem due to Ricceri.

Results of nonexistence of solutions for some nonlinear evolution problems

Medjahed Djilali, Ali Hakem (2019)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

In the present paper, we prove nonexistence results for the following nonlinear evolution equation, see works of T. Cazenave and A. Haraux (1990) and S. Zheng (2004), u t t + f ( x ) u t + ( - Δ ) α / 2 ( u m ) = h ( t , x ) | u | p , posed in ( 0 , T ) × N , where ( - Δ ) α / 2 , 0 < α 2 is α / 2 -fractional power of - Δ . Our method of proof is based on suitable choices of the test functions in the weak formulation of the sought solutions. Then, we extend this result to the case of a 2 × 2 system of the same type.

A nonlinear elliptic equation with singular potential and applications to nonlinear field equations

Marino Badiale, Vieri Benci, Sergio Rolando (2007)

Journal of the European Mathematical Society

Similarity:

We prove the existence of cylindrical solutions to the semilinear elliptic problem Δ u + u | y | 2 = f ( u ) , u H 1 ( N ) , u 0 , where ( y , z ) k × N k , N > k 2 and f has a double-power behaviour, subcritical at infinity and supercritical near the origin. This result also implies the existence of solitary waves with nonvanishing angular momentum for nonlinear Schr¨odinger and Klein–Gordon equations.

Logarithmically improved blow-up criterion for smooth solutions to the Leray- α -magnetohydrodynamic equations

Ines Ben Omrane, Sadek Gala, Jae-Myoung Kim, Maria Alessandra Ragusa (2019)

Archivum Mathematicum

Similarity:

In this paper, the Cauchy problem for the 3 D Leray- α -MHD model is investigated. We obtain the logarithmically improved blow-up criterion of smooth solutions for the Leray- α -MHD model in terms of the magnetic field B only in the framework of homogeneous Besov space with negative index.

Blowup rates for nonlinear heat equations with gradient terms and for parabolic inequalities

Philippe Souplet, Slim Tayachi (2001)

Colloquium Mathematicae

Similarity:

Consider the nonlinear heat equation (E): u t - Δ u = | u | p - 1 u + b | u | q . We prove that for a large class of radial, positive, nonglobal solutions of (E), one has the blowup estimates C ( T - t ) - 1 / ( p - 1 ) | | u ( t ) | | C ( T - t ) - 1 / ( p - 1 ) . Also, as an application of our method, we obtain the same upper estimate if u only satisfies the nonlinear parabolic inequality u t - u x x u p . More general inequalities of the form u t - u x x f ( u ) with, for instance, f ( u ) = ( 1 + u ) l o g p ( 1 + u ) are also treated. Our results show that for solutions of the parabolic inequality, one has essentially the same estimates as for solutions...