Displaying similar documents to “Can ( p ) ever be amenable?”

𝒞 k -regularity for the ¯ -equation with a support condition

Shaban Khidr, Osama Abdelkader (2017)

Czechoslovak Mathematical Journal

Similarity:

Let D be a 𝒞 d q -convex intersection, d 2 , 0 q n - 1 , in a complex manifold X of complex dimension n , n 2 , and let E be a holomorphic vector bundle of rank N over X . In this paper, 𝒞 k -estimates, k = 2 , 3 , , , for solutions to the ¯ -equation with small loss of smoothness are obtained for E -valued ( 0 , s ) -forms on D when n - q s n . In addition, we solve the ¯ -equation with a support condition in 𝒞 k -spaces. More precisely, we prove that for a ¯ -closed form f in 𝒞 0 , q k ( X D , E ) , 1 q n - 2 , n 3 , with compact support and for ε with 0 < ε < 1 there...

Functionally countable subalgebras and some properties of the Banaschewski compactification

A. R. Olfati (2016)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Let X be a zero-dimensional space and C c ( X ) be the set of all continuous real valued functions on X with countable image. In this article we denote by C c K ( X ) (resp., C c ψ ( X ) ) the set of all functions in C c ( X ) with compact (resp., pseudocompact) support. First, we observe that C c K ( X ) = O c β 0 X X (resp., C c ψ ( X ) = M c β 0 X υ 0 X ), where β 0 X is the Banaschewski compactification of X and υ 0 X is the -compactification of X . This implies that for an -compact space X , the intersection of all free maximal ideals in C c ( X ) is equal to C c K ( X ) , i.e., M c β 0 X X = C c K ( X ) . By applying...

Σ s -products revisited

Reynaldo Rojas-Hernández (2015)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We show that any Σ s -product of at most 𝔠 -many L Σ ( ω ) -spaces has the L Σ ( ω ) -property. This result generalizes some known results about L Σ ( ω ) -spaces. On the other hand, we prove that every Σ s -product of monotonically monolithic spaces is monotonically monolithic, and in a similar form, we show that every Σ s -product of Collins-Roscoe spaces has the Collins-Roscoe property. These results generalize some known results about the Collins-Roscoe spaces and answer some questions due to Tkachuk [Lifting the Collins-Roscoe...

On butterfly-points in β X , Tychonoff products and weak Lindelöf numbers

Sergei Logunov (2022)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Let X be the Tychonoff product α < τ X α of τ -many Tychonoff non-single point spaces X α . Let p X * be a point in the closure of some G X whose weak Lindelöf number is strictly less than the cofinality of τ . Then we show that β X { p } is not normal. Under some additional assumptions, p is a butterfly-point in β X . In particular, this is true if either X = ω τ or X = R τ and τ is infinite and not countably cofinal.

Fixed points with respect to the L-slice homomorphism σ a

K.S. Sabna, N.R. Mangalambal (2019)

Archivum Mathematicum

Similarity:

Given a locale L and a join semilattice J with bottom element 0 J , a new concept ( σ , J ) called L -slice is defined,where σ is as an action of the locale L on the join semilattice J . The L -slice ( σ , J ) adopts topological properties of the locale L through the action σ . It is shown that for each a L , σ a is an interior operator on ( σ , J ) .The collection M = { σ a ; a L } is a Priestly space and a subslice of L - Hom ( J , J ) . If the locale L is spatial we establish an isomorphism between the L -slices ( σ , L ) and ( δ , M ) . We have shown that the fixed...

Selectors of discrete coarse spaces

Igor Protasov (2022)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Given a coarse space ( X , ) with the bornology of bounded subsets, we extend the coarse structure from X × X to the natural coarse structure on ( { } ) × ( { } ) and say that a macro-uniform mapping f : ( { } ) X (or f : [ X ] 2 X ) is a selector (or 2-selector) of ( X , ) if f ( A ) A for each A { } ( A [ X ] 2 , respectively). We prove that a discrete coarse space ( X , ) admits a selector if and only if ( X , ) admits a 2-selector if and only if there exists a linear order “ " on X such that the family of intervals { [ a , b ] : a , b X , a b } is a base for the bornology .