The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Infinitely many positive solutions for the Neumann problem involving the p-Laplacian”

Multiple solutions to a perturbed Neumann problem

Giuseppe Cordaro (2007)

Studia Mathematica

Similarity:

We consider the perturbed Neumann problem ⎧ -Δu + α(x)u = α(x)f(u) + λg(x,u) a.e. in Ω, ⎨ ⎩ ∂u/∂ν = 0 on ∂Ω, where Ω is an open bounded set in N with boundary of class C², α L ( Ω ) with e s s i n f Ω α > 0 , f: ℝ → ℝ is a continuous function and g: Ω × ℝ → ℝ, besides being a Carathéodory function, is such that, for some p > N, s u p | s | t | g ( , s ) | L p ( Ω ) and g ( , t ) L ( Ω ) for all t ∈ ℝ. In this setting, supposing only that the set of global minima of the function 1 / 2 ξ ² - 0 ξ f ( t ) d t has M ≥ 2 bounded connected components, we prove that, for all λ ∈ ℝ small enough,...

Classical boundary value problems for integrable temperatures in a C 1 domain

Anna Grimaldi Piro, Francesco Ragnedda (1991)

Annales Polonici Mathematici

Similarity:

Abstract. We study a Neumann problem for the heat equation in a cylindrical domain with C 1 -base and data in h c 1 , a subspace of L 1. We derive our results, considering the action of an adjoint operator on B T M O C , a predual of h c 1 , and using known properties of this last space.

On a Kleinecke-Shirokov theorem

Vasile Lauric (2021)

Czechoslovak Mathematical Journal

Similarity:

We prove that for normal operators N 1 , N 2 ( ) , the generalized commutator [ N 1 , N 2 ; X ] approaches zero when [ N 1 , N 2 ; [ N 1 , N 2 ; X ] ] tends to zero in the norm of the Schatten-von Neumann class 𝒞 p with p > 1 and X varies in a bounded set of such a class.

Curved thin domains and parabolic equations

M. Prizzi, M. Rinaldi, K. P. Rybakowski (2002)

Studia Mathematica

Similarity:

Consider the family uₜ = Δu + G(u), t > 0, x Ω ε , ν ε u = 0 , t > 0, x Ω ε , ( E ε ) of semilinear Neumann boundary value problems, where, for ε > 0 small, the set Ω ε is a thin domain in l , possibly with holes, which collapses, as ε → 0⁺, onto a (curved) k-dimensional submanifold of l . If G is dissipative, then equation ( E ε ) has a global attractor ε . We identify a “limit” equation for the family ( E ε ) , prove convergence of trajectories and establish an upper semicontinuity result for the family ε as ε → 0⁺. ...

A universal bound for lower Neumann eigenvalues of the Laplacian

Wei Lu, Jing Mao, Chuanxi Wu (2020)

Czechoslovak Mathematical Journal

Similarity:

Let M be an n -dimensional ( n 2 ) simply connected Hadamard manifold. If the radial Ricci curvature of M is bounded from below by ( n - 1 ) k ( t ) with respect to some point p M , where t = d ( · , p ) is the Riemannian distance on M to p , k ( t ) is a nonpositive continuous function on ( 0 , ) , then the first n nonzero Neumann eigenvalues of the Laplacian on the geodesic ball B ( p , l ) , with center p and radius 0 < l < , satisfy 1 μ 1 + 1 μ 2 + + 1 μ n l n + 2 ( n + 2 ) 0 l f n - 1 ( t ) d t , where f ( t ) is the solution to f ' ' ( t ) + k ( t ) f ( t ) = 0 on ( 0 , ) , f ( 0 ) = 0 , f ' ( 0 ) = 1 .

Inequalities for real number sequences with applications in spectral graph theory

Emina Milovanović, Şerife Burcu Bozkurt Altındağ, Marjan Matejić, Igor Milovanović (2022)

Czechoslovak Mathematical Journal

Similarity:

Let a = ( a 1 , a 2 , ... , a n ) be a nonincreasing sequence of positive real numbers. Denote by S = { 1 , 2 , ... , n } the index set and by J k = { I = { r 1 , r 2 , ... , r k } , 1 r 1 < r 2 < < r k n } the set of all subsets of S of cardinality k , 1 k n - 1 . In addition, denote by a I = a r 1 + a r 2 + + a r k , 1 k n - 1 , 1 r 1 < r 2 < < r k n , the sum of k arbitrary elements of sequence a , where a I 1 = a 1 + a 2 + + a k and a I n = a n - k + 1 + a n - k + 2 + + a n . We consider bounds of the quantities R S k ( a ) = a I 1 / a I n , L S k ( a ) = a I 1 - a I n and S k , α ( a ) = I J k a I α in terms of A = i = 1 n a i and B = i = 1 n a i 2 . Then we use the obtained results to generalize some results regarding Laplacian and normalized Laplacian eigenvalues of graphs.

Perturbations of real parts of eigenvalues of bounded linear operators in a Hilbert space

Michael Gil&#039; (2024)

Czechoslovak Mathematical Journal

Similarity:

Let A be a bounded linear operator in a complex separable Hilbert space , and S be a selfadjoint operator in . Assuming that A - S belongs to the Schatten-von Neumann ideal 𝒮 p ( p > 1 ) , we derive a bound for k | R λ k ( A ) - λ k ( S ) | p , where λ k ( A ) ( k = 1 , 2 , ) are the eigenvalues of A . Our results are formulated in terms of the “extended” eigenvalue sets in the sense introduced by T. Kato. In addition, in the case p = 2 we refine the Weyl inequality between the real parts of the eigenvalues of A and the eigenvalues...

On butterfly-points in β X , Tychonoff products and weak Lindelöf numbers

Sergei Logunov (2022)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Let X be the Tychonoff product α < τ X α of τ -many Tychonoff non-single point spaces X α . Let p X * be a point in the closure of some G X whose weak Lindelöf number is strictly less than the cofinality of τ . Then we show that β X { p } is not normal. Under some additional assumptions, p is a butterfly-point in β X . In particular, this is true if either X = ω τ or X = R τ and τ is infinite and not countably cofinal.

Numerical approximation of the non-linear fourth-order boundary-value problem

Svobodová, Ivona

Similarity:

We consider functionals of a potential energy ψ ( u ) corresponding to 𝑎𝑛 𝑎𝑥𝑖𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 - 𝑣𝑎𝑙𝑢𝑒 𝑝𝑟𝑜𝑏𝑙𝑒𝑚 . We are dealing with 𝑎 𝑑𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑎 𝑡ℎ𝑖𝑛 𝑎𝑛𝑛𝑢𝑙𝑎𝑟 𝑝𝑙𝑎𝑡𝑒 with 𝑁𝑒𝑢𝑚𝑎𝑛𝑛 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠 . Various types of the subsoil of the plate are described by various types of the 𝑛𝑜𝑛𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡𝑖𝑎𝑏𝑙𝑒 nonlinear term ψ ( u ) . The aim of the paper is to find a suitable computational algorithm.

The subspace of weak P -points of *

Salvador García-Ferreira, Y. F. Ortiz-Castillo (2015)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Let W be the subspace of * consisting of all weak P -points. It is not hard to see that W is a pseudocompact space. In this paper we shall prove that this space has stronger pseudocompact properties. Indeed, it is shown that W is a p -pseudocompact space for all p * .