Displaying similar documents to “Non-compact Littlewood-Paley theory for non-doubling measures”

The John-Nirenberg type inequality for non-doubling measures

Yoshihiro Sawano, Hitoshi Tanaka (2007)

Studia Mathematica

Similarity:

X. Tolsa defined a space of BMO type for positive Radon measures satisfying some growth condition on d . This new BMO space is very suitable for the Calderón-Zygmund theory with non-doubling measures. Especially, the John-Nirenberg type inequality can be recovered. In the present paper we introduce a localized and weighted version of this inequality and, as applications, we obtain some vector-valued inequalities and weighted inequalities for Morrey spaces.

The John-Nirenberg inequality for functions of bounded mean oscillation with bounded negative part

Min Hu, Dinghuai Wang (2022)

Czechoslovak Mathematical Journal

Similarity:

A version of the John-Nirenberg inequality suitable for the functions b BMO with b - L is established. Then, equivalent definitions of this space via the norm of weighted Lebesgue space are given. As an application, some characterizations of this function space are given by the weighted boundedness of the commutator with the Hardy-Littlewood maximal operator.

The maximal theorem for weighted grand Lebesgue spaces

Alberto Fiorenza, Babita Gupta, Pankaj Jain (2008)

Studia Mathematica

Similarity:

We study the Hardy inequality and derive the maximal theorem of Hardy and Littlewood in the context of grand Lebesgue spaces, considered when the underlying measure space is the interval (0,1) ⊂ ℝ, and the maximal function is localized in (0,1). Moreover, we prove that the inequality | | M f | | p ) , w c | | f | | p ) , w holds with some c independent of f iff w belongs to the well known Muckenhoupt class A p , and therefore iff | | M f | | p , w c | | f | | p , w for some c independent of f. Some results of similar type are discussed for the case of small...

ω-Calderón-Zygmund operators

Sijue Wu (1995)

Studia Mathematica

Similarity:

We prove a T1 theorem and develop a version of Calderón-Zygmund theory for ω-CZO when ω A .

Weighted norm inequalities for maximal singular integrals with nondoubling measures

Guoen Hu, Dachun Yang (2008)

Studia Mathematica

Similarity:

Let μ be a nonnegative Radon measure on d which satisfies μ(B(x,r)) ≤ Crⁿ for any x d and r > 0 and some positive constants C and n ∈ (0,d]. In this paper, some weighted norm inequalities with A p ϱ ( μ ) weights of Muckenhoupt type are obtained for maximal singular integral operators with such a measure μ, via certain weighted estimates with A ϱ ( μ ) weights of Muckenhoupt type involving the John-Strömberg maximal operator and the John-Strömberg sharp maximal operator, where ϱ,p ∈ [1,∞).

Lipschitz continuity in Muckenhoupt 𝓐₁ weighted function spaces

Dorothee D. Haroske (2011)

Banach Center Publications

Similarity:

We study continuity envelopes of function spaces B p , q s ( , w ) and F p , q s ( , w ) where the weight belongs to the Muckenhoupt class ₁. This essentially extends partial forerunners in [13, 14]. We also indicate some applications of these results.

Maximal function and Carleson measures in the theory of Békollé-Bonami weights

Carnot D. Kenfack, Benoît F. Sehba (2016)

Colloquium Mathematicae

Similarity:

Let ω be a Békollé-Bonami weight. We give a complete characterization of the positive measures μ such that | M ω f ( z ) | q d μ ( z ) C ( | f ( z ) | p ω ( z ) d V ( z ) ) q / p and μ ( z : M f ( z ) > λ ) C / ( λ q ) ( | f ( z ) | p ω ( z ) d V ( z ) ) q / p , where M ω is the weighted Hardy-Littlewood maximal function on the upper half-plane and 1 ≤ p,q <; ∞.

On Beurling measure algebras

Ross Stokke (2022)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We show how the measure theory of regular compacted-Borel measures defined on the δ -ring of compacted-Borel subsets of a weighted locally compact group ( G , ω ) provides a compatible framework for defining the corresponding Beurling measure algebra ( G , ω ) , thus filling a gap in the literature.

Boundedness of Littlewood-Paley operators relative to non-isotropic dilations

Shuichi Sato (2019)

Czechoslovak Mathematical Journal

Similarity:

We consider Littlewood-Paley functions associated with a non-isotropic dilation group on n . We prove that certain Littlewood-Paley functions defined by kernels with no regularity concerning smoothness are bounded on weighted L p spaces, 1 < p < , with weights of the Muckenhoupt class. This, in particular, generalizes a result of N. Rivière (1971).

Calderón-Zygmund operators acting on generalized Carleson measure spaces

Chin-Cheng Lin, Kunchuan Wang (2012)

Studia Mathematica

Similarity:

We study Calderón-Zygmund operators acting on generalized Carleson measure spaces C M O r α , q and show a necessary and sufficient condition for their boundedness. The spaces C M O r α , q are a generalization of BMO, and can be regarded as the duals of homogeneous Triebel-Lizorkin spaces as well.

Two-weighted criteria for integral transforms with multiple kernels

Vakhtang Kokilashvili, Alexander Meskhi (2006)

Banach Center Publications

Similarity:

Necessary and sufficient conditions governing two-weight L p norm estimates for multiple Hardy and potential operators are presented. Two-weight inequalities for potentials defined on nonhomogeneous spaces are also discussed. Sketches of the proofs for most of the results are given.

On weighted Hardy spaces on the unit disk

Evgeny A. Poletsky, Khim R. Shrestha (2015)

Banach Center Publications

Similarity:

In this paper we completely characterize those weighted Hardy spaces that are Poletsky-Stessin Hardy spaces H u p . We also provide a reduction of H problems to H u p problems and demonstrate how such a reduction can be used to make shortcuts in the proofs of the interpolation theorem and corona problem.

On the maximal function for rotation invariant measures in n

Ana Vargas (1994)

Studia Mathematica

Similarity:

Given a positive measure μ in n , there is a natural variant of the noncentered Hardy-Littlewood maximal operator M μ f ( x ) = s u p x B 1 / μ ( B ) ʃ B | f | d μ , where the supremum is taken over all balls containing the point x. In this paper we restrict our attention to rotation invariant, strictly positive measures μ in n . We give some necessary and sufficient conditions for M μ to be bounded from L 1 ( d μ ) to L 1 , ( d μ ) .

Some remarks on the dyadic Rademacher maximal function

Mikko Kemppainen (2013)

Colloquium Mathematicae

Similarity:

Properties of a maximal function for vector-valued martingales were studied by the author in an earlier paper. Restricting here to the dyadic setting, we prove the equivalence between (weighted) L p inequalities and weak type estimates, and discuss an extension to the case of locally finite Borel measures on ℝⁿ. In addition, to compensate for the lack of an L inequality, we derive a suitable BMO estimate. Different dyadic systems in different dimensions are also considered.

Monotonicity of generalized weighted mean values

Alfred Witkowski (2004)

Colloquium Mathematicae

Similarity:

The author gives a new simple proof of monotonicity of the generalized extended mean values M ( r , s ) = ( ( f s d μ ) / ( f r d μ ) ) 1 / ( s - r ) introduced by F. Qi.

Interpolating sequences, Carleson measures and Wirtinger inequality

Eric Amar (2008)

Annales Polonici Mathematici

Similarity:

Let S be a sequence of points in the unit ball of ℂⁿ which is separated for the hyperbolic distance and contained in the zero set of a Nevanlinna function. We prove that the associated measure μ S : = a S ( 1 - | a | ² ) δ a is bounded, by use of the Wirtinger inequality. Conversely, if X is an analytic subset of such that any δ -separated sequence S has its associated measure μ S bounded by C/δⁿ, then X is the zero set of a function in the Nevanlinna class of . As an easy consequence, we prove that if S is a dual...

Weighted Hardy inequalities and Hardy transforms of weights

Joan Cerdà, Joaquim Martín (2000)

Studia Mathematica

Similarity:

Many problems in analysis are described as weighted norm inequalities that have given rise to different classes of weights, such as A p -weights of Muckenhoupt and B p -weights of Ariño and Muckenhoupt. Our purpose is to show that different classes of weights are related by means of composition with classical transforms. A typical example is the family M p of weights w for which the Hardy transform is L p ( w ) -bounded. A B p -weight is precisely one for which its Hardy transform is in M p , and also a weight...

On Ordinary and Standard Lebesgue Measures on

Gogi Pantsulaia (2009)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

New concepts of Lebesgue measure on are proposed and some of their realizations in the ZFC theory are given. Also, it is shown that Baker’s both measures [1], [2], Mankiewicz and Preiss-Tišer generators [6] and the measure of [4] are not α-standard Lebesgue measures on for α = (1,1,...).

On the best ranges for A p + and R H r +

María Silvina Riveros, A. de la Torre (2001)

Czechoslovak Mathematical Journal

Similarity:

In this paper we study the relationship between one-sided reverse Hölder classes R H r + and the A p + classes. We find the best possible range of R H r + to which an A 1 + weight belongs, in terms of the A 1 + constant. Conversely, we also find the best range of A p + to which a R H + weight belongs, in terms of the R H + constant. Similar problems for A p + , 1 < p < and R H r + , 1 < r < are solved using factorization.

On a variant of the Hardy inequality between weighted Orlicz spaces

Agnieszka Kałamajska, Katarzyna Pietruska-Pałuba (2009)

Studia Mathematica

Similarity:

Let M be an N-function satisfying the Δ₂-condition, and let ω, φ be two other functions, with ω ≥ 0. We study Hardy-type inequalities M ( ω ( x ) | u ( x ) | ) e x p ( - φ ( x ) ) d x C M ( | u ' ( x ) | ) e x p ( - φ ( x ) ) d x , where u belongs to some set of locally absolutely continuous functions containing C ( ) . We give sufficient conditions on the triple (ω,φ,M) for such inequalities to be valid for all u from a given set . The set may be smaller than the set of Hardy transforms. Bounds for constants are also given, yielding classical Hardy inequalities with best constants. ...

The minimal operator and the geometric maximal operator in ℝⁿ

David Cruz-Uribe, SFO (2001)

Studia Mathematica

Similarity:

We prove two-weight norm inequalities in ℝⁿ for the minimal operator f ( x ) = i n f Q x 1 / | Q | Q | f | d y , extending to higher dimensions results obtained by Cruz-Uribe, Neugebauer and Olesen [8] on the real line. As an application we extend to ℝⁿ weighted norm inequalities for the geometric maximal operator M f ( x ) = s u p Q x e x p ( 1 / | Q | Q l o g | f | d x ) , proved by Yin and Muckenhoupt [27]. We also give norm inequalities for the centered minimal operator, study powers of doubling weights and give sufficient conditions for the geometric maximal operator to be equal...

Invariant weighted Wiener measures and almost sure global well-posedness for the periodic derivative NLS

Andrea R. Nahmod, Tadahiro Oh, Luc Rey-Bellet, Gigliola Staffilani (2012)

Journal of the European Mathematical Society

Similarity:

We construct an invariant weighted Wiener measure associated to the periodic derivative nonlinear Schrödinger equation in one dimension and establish global well-posedness for data living in its support. In particular almost surely for data in a Fourier–Lebesgue space L s , r ( T ) with s 1 2 , 2 < r < 4 , ( s - 1 ) r < - 1 and scaling like H 1 2 - ϵ ( 𝕋 ) , for small ϵ > 0 . We also show the invariance of this measure.

Triebel-Lizorkin spaces with non-doubling measures

Yongsheng Han, Dachun Yang (2004)

Studia Mathematica

Similarity:

Suppose that μ is a Radon measure on d , which may be non-doubling. The only condition assumed on μ is a growth condition, namely, there is a constant C₀ > 0 such that for all x ∈ supp(μ) and r > 0, μ(B(x,r)) ≤ C₀rⁿ, where 0 < n ≤ d. The authors provide a theory of Triebel-Lizorkin spaces p q s ( μ ) for 1 < p < ∞, 1 ≤ q ≤ ∞ and |s| < θ, where θ > 0 is a real number which depends on the non-doubling measure μ, C₀, n and d. The method does not use the vector-valued maximal function...