Displaying similar documents to “On the statistical and σ-cores”

Regular statistical convergence of double sequences

Ferenc Móricz (2005)

Colloquium Mathematicae

Similarity:

The concepts of statistical convergence of single and double sequences of complex numbers were introduced in [1] and [7], respectively. In this paper, we introduce the concept indicated in the title. A double sequence x j k : ( j , k ) ² is said to be regularly statistically convergent if (i) the double sequence x j k is statistically convergent to some ξ ∈ ℂ, (ii) the single sequence x j k : k is statistically convergent to some ξ j for each fixed j ∈ ℕ ∖ ₁, (iii) the single sequence x j k : j is statistically convergent...

A-Statistical Convergence of Subsequence of Double Sequences

Harry I. Miller (2007)

Bollettino dell'Unione Matematica Italiana

Similarity:

The concept of statistical convergence of a sequence was first introduced by H. Fast [7] in 1951. Recently, in the literature, the concept of statistical convergence of double sequences has been studied. The main result in this paper is a theorem that gives meaning to the statement: s = s i j converges statistically A to L if and only if "most" of the "subsequences" of s converge to L in the ordinary sense. The results presented here are analogue of theorems in [12], [13] and [6] and are concerned...

Nested matrices and inverse M -matrices

Jeffrey L. Stuart (2015)

Czechoslovak Mathematical Journal

Similarity:

Given a sequence of real or complex numbers, we construct a sequence of nested, symmetric matrices. We determine the L U - and Q R -factorizations, the determinant and the principal minors for such a matrix. When the sequence is real, positive and strictly increasing, the matrices are strictly positive, inverse M -matrices with symmetric, irreducible, tridiagonal inverses.

The space S α , β and σ-core

Bruno de Malafosse (2006)

Studia Mathematica

Similarity:

We give some new properties of the space S α , β and we apply them to the σ-core theory. These results generalize those by Choudhary and Yardimci.

On the convergence theory of double K -weak splittings of type II

Vaibhav Shekhar, Nachiketa Mishra, Debasisha Mishra (2022)

Applications of Mathematics

Similarity:

Recently, Wang (2017) has introduced the K -nonnegative double splitting using the notion of matrices that leave a cone K n invariant and studied its convergence theory by generalizing the corresponding results for the nonnegative double splitting by Song and Song (2011). However, the convergence theory for K -weak regular and K -nonnegative double splittings of type II is not yet studied. In this article, we first introduce this class of splittings and then discuss the convergence theory...

On the matrix negative Pell equation

Aleksander Grytczuk, Izabela Kurzydło (2009)

Discussiones Mathematicae - General Algebra and Applications

Similarity:

Let N be a set of natural numbers and Z be a set of integers. Let M₂(Z) denotes the set of all 2x2 matrices with integer entries. We give necessary and suficient conditions for solvability of the matrix negative Pell equation (P) X² - dY² = -I with d ∈ N for nonsingular X,Y belonging to M₂(Z) and his generalization (Pn) i = 1 n X i - d i = 1 n Y ² i = - I with d ∈ N for nonsingular X i , Y i M ( Z ) , i=1,...,n.

Circulant matrices with orthogonal rows and off-diagonal entries of absolute value 1

Daniel Uzcátegui Contreras, Dardo Goyeneche, Ondřej Turek, Zuzana Václavíková (2021)

Communications in Mathematics

Similarity:

It is known that a real symmetric circulant matrix with diagonal entries d 0 , off-diagonal entries ± 1 and orthogonal rows exists only of order 2 d + 2 (and trivially of order 1 ) [Turek and Goyeneche 2019]. In this paper we consider a complex Hermitian analogy of those matrices. That is, we study the existence and construction of Hermitian circulant matrices having orthogonal rows, diagonal entries d 0 and any complex entries of absolute value 1 off the diagonal. As a particular case, we consider...

Some methods of constructing kernels in statistical learning

Tomasz Górecki, Maciej Łuczak (2010)

Discussiones Mathematicae Probability and Statistics

Similarity:

This paper is a collection of numerous methods and results concerning a design of kernel functions. It gives a short overview of methods of building kernels in metric spaces, especially R n and S n . However we also present a new theory. Introducing kernels was motivated by searching for non-linear patterns by using linear functions in a feature space created using a non-linear feature map.

Statistical approximation by positive linear operators

O. Duman, C. Orhan (2004)

Studia Mathematica

Similarity:

Using A-statistical convergence, we prove a Korovkin type approximation theorem which concerns the problem of approximating a function f by means of a sequence Tₙ(f;x) of positive linear operators acting from a weighted space C ϱ into a weighted space B ϱ .

Universal rates for estimating the residual waiting time in an intermittent way

Gusztáv Morvai, Benjamin Weiss (2020)

Kybernetika

Similarity:

A simple renewal process is a stochastic process { X n } taking values in { 0 , 1 } where the lengths of the runs of 1 ’s between successive zeros are independent and identically distributed. After observing X 0 , X 1 , ... X n one would like to estimate the time remaining until the next occurrence of a zero, and the problem of universal estimators is to do so without prior knowledge of the distribution of the process. We give some universal estimates with rates for the expected time to renewal as well as for the conditional...

G-matrices, J -orthogonal matrices, and their sign patterns

Frank J. Hall, Miroslav Rozložník (2016)

Czechoslovak Mathematical Journal

Similarity:

A real matrix A is a G-matrix if A is nonsingular and there exist nonsingular diagonal matrices D 1 and D 2 such that A - T = D 1 A D 2 , where A - T denotes the transpose of the inverse of A . Denote by J = diag ( ± 1 ) a diagonal (signature) matrix, each of whose diagonal entries is + 1 or - 1 . A nonsingular real matrix Q is called J -orthogonal if Q T J Q = J . Many connections are established between these matrices. In particular, a matrix A is a G-matrix if and only if A is diagonally (with positive diagonals) equivalent to a column permutation...

Vandermonde nets

Roswitha Hofer, Harald Niederreiter (2014)

Acta Arithmetica

Similarity:

The second-named author recently suggested identifying the generating matrices of a digital (t,m,s)-net over the finite field q with an s × m matrix C over q m . More exactly, the entries of C are determined by interpreting the rows of the generating matrices as elements of q m . This paper introduces so-called Vandermonde nets, which correspond to Vandermonde-type matrices C, and discusses the quality parameter and the discrepancy of such nets. The methods that have been successfully used...

A computation of positive one-peak posets that are Tits-sincere

Marcin Gąsiorek, Daniel Simson (2012)

Colloquium Mathematicae

Similarity:

A complete list of positive Tits-sincere one-peak posets is provided by applying combinatorial algorithms and computer calculations using Maple and Python. The problem whether any square integer matrix A ( ) is ℤ-congruent to its transpose A t r is also discussed. An affirmative answer is given for the incidence matrices C I and the Tits matrices C ̂ I of positive one-peak posets I.

Linear preservers of rc-majorization on matrices

Mohammad Soleymani (2024)

Czechoslovak Mathematical Journal

Similarity:

Let A , B be n × m matrices. The concept of matrix majorization means the j th column of A is majorized by the j th column of B and this is done for all j by a doubly stochastic matrix D . We define rc-majorization that extended matrix majorization to columns and rows of matrices. Also, the linear preservers of rc-majorization will be characterized.

Various categorical approaches to statistical spaces

Tadeusz Bromek, Maria Moszyńska

Similarity:

CONTENTSIntroduction..............................................................................................................51. Preliminaries........................................................................................................61.0. Measurable, probabilistic, and statistical spaces..............................................61.1. Transition functions..........................................................................................61.2. Linear space of...

Geometry and inequalities of geometric mean

Trung Hoa Dinh, Sima Ahsani, Tin-Yau Tam (2016)

Czechoslovak Mathematical Journal

Similarity:

We study some geometric properties associated with the t -geometric means A t B : = A 1 / 2 ( A - 1 / 2 B A - 1 / 2 ) t A 1 / 2 of two n × n positive definite matrices A and B . Some geodesical convexity results with respect to the Riemannian structure of the n × n positive definite matrices are obtained. Several norm inequalities with geometric mean are obtained. In particular, we generalize a recent result of Audenaert (2015). Numerical counterexamples are given for some inequality questions. A conjecture on the geometric mean inequality regarding...