Displaying similar documents to “Heat kernel estimates for a class of higher order operators on Lie groups”

Sub-Laplacian with drift in nilpotent Lie groups

Camillo Melzi (2003)

Colloquium Mathematicae

Similarity:

We consider the heat kernel ϕ t corresponding to the left invariant sub-Laplacian with drift term in the first commutator of the Lie algebra, on a nilpotent Lie group. We improve the results obtained by G. Alexopoulos in [1], [2] proving the “exact Gaussian factor” exp(-|g|²/4(1+ε)t) in the large time upper Gaussian estimate for ϕ t . We also obtain a large time lower Gaussian estimate for ϕ t .

Asymptotic behavior of the invariant measure for a diffusion related to an NA group

Ewa Damek, Andrzej Hulanicki (2006)

Colloquium Mathematicae

Similarity:

On a Lie group NA that is a split extension of a nilpotent Lie group N by a one-parameter group of automorphisms A, the heat semigroup μ t generated by a second order subelliptic left-invariant operator j = 0 m Y j + Y is considered. Under natural conditions there is a μ ̌ t -invariant measure m on N, i.e. μ ̌ t * m = m . Precise asymptotics of m at infinity is given for a large class of operators with Y₀,...,Yₘ generating the Lie algebra of S.

A solvability criterion for finite groups related to character degrees

Babak Miraali, Sajjad Mahmood Robati (2020)

Czechoslovak Mathematical Journal

Similarity:

Let m > 1 be a fixed positive integer. In this paper, we consider finite groups each of whose nonlinear character degrees has exactly m prime divisors. We show that such groups are solvable whenever m > 2 . Moreover, we prove that if G is a non-solvable group with this property, then m = 2 and G is an extension of A 7 or S 7 by a solvable group.

The evolution and Poisson kernels on nilpotent meta-abelian groups

Richard Penney, Roman Urban (2013)

Studia Mathematica

Similarity:

Let S be a semidirect product S = N⋊ A where N is a connected and simply connected, non-abelian, nilpotent meta-abelian Lie group and A is isomorphic to k , k>1. We consider a class of second order left-invariant differential operators on S of the form α = L a + Δ α , where α k , and for each a k , L a is left-invariant second order differential operator on N and Δ α = Δ - α , , where Δ is the usual Laplacian on k . Using some probabilistic techniques (e.g., skew-product formulas for diffusions on S and N respectively)...

SCAP-subalgebras of Lie algebras

Sara Chehrazi, Ali Reza Salemkar (2016)

Czechoslovak Mathematical Journal

Similarity:

A subalgebra H of a finite dimensional Lie algebra L is said to be a SCAP -subalgebra if there is a chief series 0 = L 0 L 1 ... L t = L of L such that for every i = 1 , 2 , ... , t , we have H + L i = H + L i - 1 or H L i = H L i - 1 . This is analogous to the concept of SCAP -subgroup, which has been studied by a number of authors. In this article, we investigate the connection between the structure of a Lie algebra and its SCAP -subalgebras and give some sufficient conditions for a Lie algebra to be solvable or supersolvable.

Leibniz's rule on two-step nilpotent Lie groups

Krystian Bekała (2016)

Colloquium Mathematicae

Similarity:

Let be a nilpotent Lie algebra which is also regarded as a homogeneous Lie group with the Campbell-Hausdorff multiplication. This allows us to define a generalized multiplication f g = ( f g ) of two functions in the Schwartz class (*), where and are the Abelian Fourier transforms on the Lie algebra and on the dual * and ∗ is the convolution on the group . In the operator analysis on nilpotent Lie groups an important notion is the one of symbolic calculus which can be viewed as a higher order...

On a divisibility problem

Shichun Yang, Florian Luca, Alain Togbé (2019)

Mathematica Bohemica

Similarity:

Let p 1 , p 2 , be the sequence of all primes in ascending order. Using explicit estimates from the prime number theory, we show that if k 5 , then ( p k + 1 - 1 ) ! ( 1 2 ( p k + 1 - 1 ) ) ! p k ! , which improves a previous result of the second author.

Transferring L p eigenfunction bounds from S 2 n + 1 to hⁿ

Valentina Casarino, Paolo Ciatti (2009)

Studia Mathematica

Similarity:

By using the notion of contraction of Lie groups, we transfer L p - L ² estimates for joint spectral projectors from the unit complex sphere S 2 n + 1 in n + 1 to the reduced Heisenberg group hⁿ. In particular, we deduce some estimates recently obtained by H. Koch and F. Ricci on hⁿ. As a consequence, we prove, in the spirit of Sogge’s work, a discrete restriction theorem for the sub-Laplacian L on hⁿ.

The covering semigroup of invariant control systems on Lie groups

Víctor Ayala, Eyüp Kizil (2016)

Kybernetika

Similarity:

It is well known that the class of invariant control systems is really relevant both from theoretical and practical point of view. This work was an attempt to connect an invariant systems on a Lie group G with its covering space. Furthermore, to obtain algebraic properties of this set. Let G be a Lie group with identity e and Σ 𝔤 a cone in the Lie algebra 𝔤 of G that satisfies the Lie algebra rank condition. We use a formalism developed by Sussmann, to obtain an algebraic structure on...

On the nilpotent residuals of all subalgebras of Lie algebras

Wei Meng, Hailou Yao (2018)

Czechoslovak Mathematical Journal

Similarity:

Let 𝒩 denote the class of nilpotent Lie algebras. For any finite-dimensional Lie algebra L over an arbitrary field 𝔽 , there exists a smallest ideal I of L such that L / I 𝒩 . This uniquely determined ideal of L is called the nilpotent residual of L and is denoted by L 𝒩 . In this paper, we define the subalgebra S ( L ) = H L I L ( H 𝒩 ) . Set S 0 ( L ) = 0 . Define S i + 1 ( L ) / S i ( L ) = S ( L / S i ( L ) ) for i 1 . By S ( L ) denote the terminal term of the ascending series. It is proved that L = S ( L ) if and only if L 𝒩 is nilpotent. In addition, we investigate the basic properties of a...

Semibounded Unitary Representations of Double Extensions of Hilbert–Loop Groups

K. H. Neeb (2014)

Annales de l’institut Fourier

Similarity:

A unitary representation π of a, possibly infinite dimensional, Lie group G is called semibounded if the corresponding operators i d π ( x ) from the derived representation are uniformly bounded from above on some non-empty open subset of the Lie algebra 𝔤 of G . We classify all irreducible semibounded representations of the groups ^ φ ( K ) which are double extensions of the twisted loop group φ ( K ) , where K is a simple Hilbert–Lie group (in the sense that the scalar product on its Lie algebra is invariant)...

Elementary operators on Banach algebras and Fourier transform

Miloš Arsenović, Dragoljub Kečkić (2006)

Studia Mathematica

Similarity:

We consider elementary operators x j = 1 n a j x b j , acting on a unital Banach algebra, where a j and b j are separately commuting families of generalized scalar elements. We give an ascent estimate and a lower bound estimate for such an operator. Additionally, we give a weak variant of the Fuglede-Putnam theorem for an elementary operator with strongly commuting families a j and b j , i.e. a j = a j ' + i a j ' ' ( b j = b j ' + i b j ' ' ), where all a j ' and a j ' ' ( b j ' and b j ' ' ) commute. The main tool is an L¹ estimate of the Fourier transform of a certain class...

Nonanalyticity of solutions to t u = ² x u + u ²

Grzegorz Łysik (2003)

Colloquium Mathematicae

Similarity:

It is proved that the solution to the initial value problem t u = ² x u + u ² , u(0,x) = 1/(1+x²), does not belong to the Gevrey class G s in time for 0 ≤ s < 1. The proof is based on an estimation of a double sum of products of binomial coefficients.

Littlewood-Paley characterization of Hölder-Zygmund spaces on stratified Lie groups

Guorong Hu (2019)

Czechoslovak Mathematical Journal

Similarity:

We give a characterization of the Hölder-Zygmund spaces 𝒞 σ ( G ) ( 0 < σ < ) on a stratified Lie group G in terms of Littlewood-Paley type decompositions, in analogy to the well-known characterization of the Euclidean case. Such decompositions are defined via the spectral measure of a sub-Laplacian on G , in place of the Fourier transform in the classical setting. Our approach mainly relies on almost orthogonality estimates and can be used to study other function spaces such as Besov and Triebel-Lizorkin...

A characterization of the linear groups L 2 ( p )

Alireza Khalili Asboei, Ali Iranmanesh (2014)

Czechoslovak Mathematical Journal

Similarity:

Let G be a finite group and π e ( G ) be the set of element orders of G . Let k π e ( G ) and m k be the number of elements of order k in G . Set nse ( G ) : = { m k : k π e ( G ) } . In fact nse ( G ) is the set of sizes of elements with the same order in G . In this paper, by nse ( G ) and order, we give a new characterization of finite projective special linear groups L 2 ( p ) over a field with p elements, where p is prime. We prove the following theorem: If G is a group such that | G | = | L 2 ( p ) | and nse ( G ) consists of 1 , p 2 - 1 , p ( p + ϵ ) / 2 and some numbers divisible by 2 p , where p is a prime...