Displaying similar documents to “Besov spaces on spaces of homogeneous type and fractals”

Anisotropic classes of homogeneous pseudodifferential symbols

Árpád Bényi, Marcin Bownik (2010)

Studia Mathematica

Similarity:

We define homogeneous classes of x-dependent anisotropic symbols γ , δ m ( A ) in the framework determined by an expansive dilation A, thus extending the existing theory for diagonal dilations. We revisit anisotropic analogues of Hörmander-Mikhlin multipliers introduced by Rivière [Ark. Mat. 9 (1971)] and provide direct proofs of their boundedness on Lebesgue and Hardy spaces by making use of the well-established Calderón-Zygmund theory on spaces of homogeneous type. We then show that x-dependent...

Positively homogeneous functions and the Łojasiewicz gradient inequality

Alain Haraux (2005)

Annales Polonici Mathematici

Similarity:

It is quite natural to conjecture that a positively homogeneous function with degree d ≥ 2 on N satisfies the Łojasiewicz gradient inequality with exponent θ = 1/d without any need for an analyticity assumption. We show that this property is true under some additional hypotheses, but not always, even for N = 2.

A subelliptic Bourgain–Brezis inequality

Yi Wang, Po-Lam Yung (2014)

Journal of the European Mathematical Society

Similarity:

We prove an approximation lemma on (stratified) homogeneous groups that allows one to approximate a function in the non-isotropic Sobolev space N L ˙ 1 , Q by L functions, generalizing a result of Bourgain–Brezis. We then use this to obtain a Gagliardo–Nirenberg inequality for on the Heisenberg group n .

Limiting Sobolev inequalities for vector fields and canceling linear differential operators

Jean Van Schaftingen (2013)

Journal of the European Mathematical Society

Similarity:

The estimate D k - 1 u L n / ( n - 1 ) A ( D ) u L 1 is shown to hold if and only if A ( D ) is elliptic and canceling. Here A ( D ) is a homogeneous linear differential operator A ( D ) of order k on n from a vector space V to a vector space E . The operator A ( D ) is defined to be canceling if ξ n { 0 } A ( ξ ) [ V ] = { 0 } . This result implies in particular the classical Gagliardo–Nirenberg–Sobolev inequality, the Korn–Sobolev inequality and Hodge–Sobolev estimates for differential forms due to J. Bourgain and H. Brezis. In the proof, the class of cocanceling homogeneous...

Classifying homogeneous ultrametric spaces up to coarse equivalence

Taras Banakh, Dušan Repovš (2016)

Colloquium Mathematicae

Similarity:

For every metric space X we introduce two cardinal characteristics c o v ( X ) and c o v ( X ) describing the capacity of balls in X. We prove that these cardinal characteristics are invariant under coarse equivalence, and that two ultrametric spaces X,Y are coarsely equivalent if c o v ( X ) = c o v ( X ) = c o v ( Y ) = c o v ( Y ) . This implies that an ultrametric space X is coarsely equivalent to an isometrically homogeneous ultrametric space if and only if c o v ( X ) = c o v ( X ) . Moreover, two isometrically homogeneous ultrametric spaces X,Y are coarsely equivalent if and...

L p ( ) boundedness for the commutator of a homogeneous singular integral operator

Guoen Hu (2003)

Studia Mathematica

Similarity:

The commutator of a singular integral operator with homogeneous kernel Ω(x)/|x|ⁿ is studied, where Ω is homogeneous of degree zero and has mean value zero on the unit sphere. It is proved that Ω L ( l o g L ) k + 1 ( S n - 1 ) is a sufficient condition for the kth order commutator to be bounded on L p ( ) for all 1 < p < ∞. The corresponding maximal operator is also considered.

Some new inhomogeneous Triebel-Lizorkin spaces on metric measure spaces and their various characterizations

Dachun Yang (2005)

Studia Mathematica

Similarity:

Let ( X , ϱ , μ ) d , θ be a space of homogeneous type, i.e. X is a set, ϱ is a quasi-metric on X with the property that there are constants θ ∈ (0,1] and C₀ > 0 such that for all x,x’,y ∈ X, | ϱ ( x , y ) - ϱ ( x ' , y ) | C ϱ ( x , x ' ) θ [ ϱ ( x , y ) + ϱ ( x ' , y ) ] 1 - θ , and μ is a nonnegative Borel regular measure on X such that for some d > 0 and all x ∈ X, μ ( y X : ϱ ( x , y ) < r ) r d . Let ε ∈ (0,θ], |s| < ε and maxd/(d+ε),d/(d+s+ε) < q ≤ ∞. The author introduces new inhomogeneous Triebel-Lizorkin spaces F q s ( X ) and establishes their frame characterizations by first establishing a Plancherel-Pólya-type...

Type and cotype of operator spaces

Hun Hee Lee (2008)

Studia Mathematica

Similarity:

We consider two operator space versions of type and cotype, namely S p -type, S q -cotype and type (p,H), cotype (q,H) for a homogeneous Hilbertian operator space H and 1 ≤ p ≤ 2 ≤ q ≤ ∞, generalizing “OH-cotype 2” of G. Pisier. We compute type and cotype of some Hilbertian operator spaces and L p spaces, and we investigate the relationship between a homogeneous Hilbertian space H and operator spaces with cotype (2,H). As applications we consider operator space versions of generalized little...

Boundedness of para-product operators on spaces of homogeneous type

Yayuan Xiao (2017)

Czechoslovak Mathematical Journal

Similarity:

We obtain the boundedness of Calderón-Zygmund singular integral operators T of non-convolution type on Hardy spaces H p ( 𝒳 ) for 1 / ( 1 + ϵ ) < p 1 , where 𝒳 is a space of homogeneous type in the sense of Coifman and Weiss (1971), and ϵ is the regularity exponent of the kernel of the singular integral operator T . Our approach relies on the discrete Littlewood-Paley-Stein theory and discrete Calderón’s identity. The crucial feature of our proof is to avoid atomic decomposition and molecular theory in contrast...

Commutators of Littlewood-Paley [...] g κ ∗ g κ * -functions on non-homogeneous metric measure spaces

Guanghui Lu, Shuangping Tao (2017)

Open Mathematics

Similarity:

The main purpose of this paper is to prove that the boundedness of the commutator [...] Mκ,b∗ κ , b * generated by the Littlewood-Paley operator [...] Mκ∗ κ * and RBMO (μ) function on non-homogeneous metric measure spaces satisfying the upper doubling and the geometrically doubling conditions. Under the assumption that the kernel of [...] Mκ∗ κ * satisfies a certain Hörmander-type condition, the authors prove that [...] Mκ,b∗ κ , b * is bounded on Lebesgue spaces Lp(μ) for 1 < p < ∞, bounded from...

A continuum X such that C ( X ) is not continuously homogeneous

Alejandro Illanes (2016)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

A metric continuum X is said to be continuously homogeneous provided that for every two points p , q X there exists a continuous surjective function f : X X such that f ( p ) = q . Answering a question by W.J. Charatonik and Z. Garncarek, in this paper we show a continuum X such that the hyperspace of subcontinua of X , C ( X ) , is not continuously homogeneous.

On the nontrivial solvability of systems of homogeneous linear equations over in ZFC

Jan Šaroch (2020)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Motivated by the paper by H. Herrlich, E. Tachtsis (2017) we investigate in ZFC the following compactness question: for which uncountable cardinals κ , an arbitrary nonempty system S of homogeneous -linear equations is nontrivially solvable in provided that each of its subsystems of cardinality less than κ is nontrivially solvable in ?

Homogeneous colourings of graphs

Tomáš Madaras, Mária Šurimová (2023)

Mathematica Bohemica

Similarity:

A proper vertex k -colouring of a graph G is called l -homogeneous if the number of colours in the neigbourhood of each vertex of G equals l . We explore basic properties (the existence and the number of used colours) of homogeneous colourings of graphs in general as well as of some specific graph families, in particular planar graphs.

New characterizations and applications of inhomogeneous Besov and Triebel-Lizorkin spaces on homogeneous type spaces and fractals

Yongsheng Han, Dachun Yang

Similarity:

Let d > 0 and θ ∈ (0,1]. We consider homogeneous type spaces, ( X , ϱ , μ ) d , θ , which are variants of the well known homogeneous type spaces in the sense of Coifman and Weiss. We introduce fractional integrals and derivatives, and prove that the Besov spaces B p q s ( X ) and Triebel-Lizorkin spaces F p q s ( X ) have the lifting properties for |s| < θ. Moreover, we give explicit representations for the inverses of these fractional integrals and derivatives. By using these representations, we prove that the fractional...

On highly nonintegrable functions and homogeneous polynomials

P. Wojtaszczyk (1997)

Annales Polonici Mathematici

Similarity:

We construct a sequence of homogeneous polynomials on the unit ball d in d which are big at each point of the unit sphere . As an application we construct a holomorphic function on d which is not integrable with any power on the intersection of d with any complex subspace.

Naturally reductive homogeneous ( α , β ) -metric spaces

M. Parhizkar, H.R. Salimi Moghaddam (2021)

Archivum Mathematicum

Similarity:

In the present paper we study naturally reductive homogeneous ( α , β ) -metric spaces. We show that for homogeneous ( α , β ) -metric spaces, under a mild condition, the two definitions of naturally reductive homogeneous Finsler space, given in the literature, are equivalent. Then, we compute the flag curvature of naturally reductive homogeneous ( α , β ) -metric spaces.

Some dimensional results for a class of special homogeneous Moran sets

Xiaomei Hu (2016)

Czechoslovak Mathematical Journal

Similarity:

We construct a class of special homogeneous Moran sets, called { m k } -quasi homogeneous Cantor sets, and discuss their Hausdorff dimensions. By adjusting the value of { m k } k 1 , we constructively prove the intermediate value theorem for the homogeneous Moran set. Moreover, we obtain a sufficient condition for the Hausdorff dimension of homogeneous Moran sets to assume the minimum value, which expands earlier works.

Radial maximal function characterizations for Hardy spaces on RD-spaces

Loukas Grafakos, Liguang Liu, Dachun Yang (2009)

Bulletin de la Société Mathématique de France

Similarity:

An RD-space 𝒳 is a space of homogeneous type in the sense of Coifman and Weiss with the additional property that a reverse doubling property holds. The authors prove that for a space of homogeneous type 𝒳 having “dimension” n , there exists a p 0 ( n / ( n + 1 ) , 1 ) such that for certain classes of distributions, the L p ( 𝒳 ) quasi-norms of their radial maximal functions and grand maximal functions are equivalent when p ( p 0 , ] . This result yields a radial maximal function characterization for Hardy spaces on 𝒳 . ...

Embeddings of Besov-Morrey spaces on bounded domains

Dorothee D. Haroske, Leszek Skrzypczak (2013)

Studia Mathematica

Similarity:

We study embeddings of spaces of Besov-Morrey type, i d Ω : p , u , q s ( Ω ) p , u , q s ( Ω ) , where Ω d is a bounded domain, and obtain necessary and sufficient conditions for the continuity and compactness of i d Ω . This continues our earlier studies relating to the case of d . Moreover, we also characterise embeddings into the scale of L p spaces or into the space of bounded continuous functions.

Representation and construction of homogeneous and quasi-homogeneous n -ary aggregation functions

Yong Su, Radko Mesiar (2021)

Kybernetika

Similarity:

Homogeneity, as one type of invariantness, means that an aggregation function is invariant with respect to multiplication by a constant, and quasi-homogeneity, as a relaxed version, reflects the original output as well as the constant. In this paper, we characterize all homogeneous/quasi-homogeneous n -ary aggregation functions and present several methods to generate new homogeneous/quasi-homogeneous n -ary aggregation functions by aggregation of given ones.