Displaying similar documents to “Uniform convergence of N-dimensional Walsh-Fourier series”

Absolute convergence of multiple Fourier integrals

Yurii Kolomoitsev, Elijah Liflyand (2013)

Studia Mathematica

Similarity:

Various new sufficient conditions for representation of a function of several variables as an absolutely convergent Fourier integral are obtained. The results are given in terms of L p integrability of the function and its partial derivatives, each with a different p. These p are subject to certain relations known earlier only for some particular cases. Sharpness and applications of the results obtained are also discussed.

Generalizations to monotonicity for uniform convergence of double sine integrals over ℝ̅²₊

Péter Kórus, Ferenc Móricz (2010)

Studia Mathematica

Similarity:

We investigate the convergence behavior of the family of double sine integrals of the form 0 0 f ( x , y ) s i n u x s i n v y d x d y , where (u,v) ∈ ℝ²₊:= ℝ₊ × ℝ₊, ℝ₊:= (0,∞), and f: ℝ²₊ → ℂ is a locally absolutely continuous function satisfying certain generalized monotonicity conditions. We give sufficient conditions for the uniform convergence of the remainder integrals a b a b to zero in (u,v) ∈ ℝ²₊ as maxa₁,a₂ → ∞ and b j > a j 0 , j = 1,2 (called uniform convergence in the regular sense). This implies the uniform convergence of the partial...

Right inverses for partial differential operators on Fourier hyperfunctions

Michael Langenbruch (2007)

Studia Mathematica

Similarity:

We characterize the partial differential operators P(D) admitting a continuous linear right inverse in the space of Fourier hyperfunctions by means of a dual (Ω̅)-type estimate valid for the bounded holomorphic functions on the characteristic variety V P near d . The estimate can be transferred to plurisubharmonic functions and is equivalent to a uniform (local) Phragmén-Lindelöf-type condition.

Convergence and integrability for some classes of trigonometric series

Živorad Tomovski

Similarity:

In this work, the theory of L¹-convergence for some classes of trigonometric series is elaborated. The work contains four chapters in which some new results are obtained. Also, new proofs of some well known theorems are given. A classical result concerning the integrability and L¹-convergence of a cosine series a / 2 + n = 1 a c o s n x (C) with convex coefficients is the well known theorem of Young. Later, Kolmogorov extended Young’s result for series (C) with quasi-convex coefficients and also showed that...

On the uniform convergence of double sine series

Péter Kórus, Ferenc Móricz (2009)

Studia Mathematica

Similarity:

Let a single sine series (*) k = 1 a k s i n k x be given with nonnegative coefficients a k . If a k is a “mean value bounded variation sequence” (briefly, MVBVS), then a necessary and sufficient condition for the uniform convergence of series (*) is that k a k 0 as k → ∞. The class MVBVS includes all sequences monotonically decreasing to zero. These results are due to S. P. Zhou, P. Zhou and D. S. Yu. In this paper we extend them from single to double sine series (**) k = 1 l = 1 c k l s i n k x s i n l y , even with complex coefficients c k l . We also...

A variation norm Carleson theorem

Richard Oberlin, Andreas Seeger, Terence Tao, Christoph Thiele, James Wright (2012)

Journal of the European Mathematical Society

Similarity:

We strengthen the Carleson-Hunt theorem by proving L p estimates for the r -variation of the partial sum operators for Fourier series and integrals, for r > 𝚖𝚊𝚡 { p ' , 2 } . Four appendices are concerned with transference, a variation norm Menshov-Paley-Zygmund theorem, and applications to nonlinear Fourier transforms and ergodic theory.

Universally divergent Fourier series via Landau's extremal functions

Gerd Herzog, Peer Chr. Kunstmann (2015)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We prove the existence of functions f A ( 𝔻 ) , the Fourier series of which being universally divergent on countable subsets of 𝕋 = 𝔻 . The proof is based on a uniform estimate of the Taylor polynomials of Landau’s extremal functions on 𝕋 { 1 } .

On the order of magnitude of Walsh-Fourier transform

Bhikha Lila Ghodadra, Vanda Fülöp (2020)

Mathematica Bohemica

Similarity:

For a Lebesgue integrable complex-valued function f defined on + : = [ 0 , ) let f ^ be its Walsh-Fourier transform. The Riemann-Lebesgue lemma says that f ^ ( y ) 0 as y . But in general, there is no definite rate at which the Walsh-Fourier transform tends to zero. In fact, the Walsh-Fourier transform of an integrable function can tend to zero as slowly as we wish. Therefore, it is interesting to know for functions of which subclasses of L 1 ( + ) there is a definite rate at which the Walsh-Fourier transform tends...

A transplantation theorem for ultraspherical polynomials at critical index

J. J. Guadalupe, V. I. Kolyada (2001)

Studia Mathematica

Similarity:

We investigate the behaviour of Fourier coefficients with respect to the system of ultraspherical polynomials. This leads us to the study of the “boundary” Lorentz space λ corresponding to the left endpoint of the mean convergence interval. The ultraspherical coefficients c ( λ ) ( f ) of λ -functions turn out to behave like the Fourier coefficients of functions in the real Hardy space ReH¹. Namely, we prove that for any f λ the series n = 1 c ( λ ) ( f ) c o s n θ is the Fourier series of some function φ ∈ ReH¹ with | | φ | | R e H ¹ c | | f | | λ . ...

The Fourier transform in Lebesgue spaces

Erik Talvila (2025)

Czechoslovak Mathematical Journal

Similarity:

For each f L p ( ) ( 1 p < ) it is shown that the Fourier transform is the distributional derivative of a Hölder continuous function. For each p , a norm is defined so that the space of Fourier transforms is isometrically isomorphic to L p ( ) . There is an exchange theorem and inversion in norm.

Regular statistical convergence of double sequences

Ferenc Móricz (2005)

Colloquium Mathematicae

Similarity:

The concepts of statistical convergence of single and double sequences of complex numbers were introduced in [1] and [7], respectively. In this paper, we introduce the concept indicated in the title. A double sequence x j k : ( j , k ) ² is said to be regularly statistically convergent if (i) the double sequence x j k is statistically convergent to some ξ ∈ ℂ, (ii) the single sequence x j k : k is statistically convergent to some ξ j for each fixed j ∈ ℕ ∖ ₁, (iii) the single sequence x j k : j is statistically convergent...

On the Nörlund means of Vilenkin-Fourier series

István Blahota, Lars-Erik Persson, Giorgi Tephnadze (2015)

Czechoslovak Mathematical Journal

Similarity:

We prove and discuss some new ( H p , L p ) -type inequalities of weighted maximal operators of Vilenkin-Nörlund means with non-increasing coefficients { q k : k 0 } . These results are the best possible in a special sense. As applications, some well-known as well as new results are pointed out in the theory of strong convergence of such Vilenkin-Nörlund means. To fulfil our main aims we also prove some new estimates of independent interest for the kernels of these summability results. In the special cases of...

Generalized absolute convergence of single and double Vilenkin-Fourier series and related results

Nayna Govindbhai Kalsariya, Bhikha Lila Ghodadra (2024)

Mathematica Bohemica

Similarity:

We consider the Vilenkin orthonormal system on a Vilenkin group G and the Vilenkin-Fourier coefficients f ^ ( n ) , n , of functions f L p ( G ) for some 1 < p 2 . We obtain certain sufficient conditions for the finiteness of the series n = 1 a n | f ^ ( n ) | r , where { a n } is a given sequence of positive real numbers satisfying a mild assumption and 0 < r < 2 . We also find analogous conditions for the double Vilenkin-Fourier series. These sufficient conditions are in terms of (either global or local) moduli of continuity of f and give multiplicative...

The distribution of Fourier coefficients of cusp forms over sparse sequences

Huixue Lao, Ayyadurai Sankaranarayanan (2014)

Acta Arithmetica

Similarity:

Let λ f ( n ) be the nth normalized Fourier coefficient of a holomorphic Hecke eigenform f ( z ) S k ( Γ ) . We establish that n x λ f 2 ( n j ) = c j x + O ( x 1 - 2 / ( ( j + 1 ) 2 + 1 ) ) for j = 2,3,4, which improves the previous results. For j = 2, we even establish a better result.

Uniform convergence of the greedy algorithm with respect to the Walsh system

Martin Grigoryan (2010)

Studia Mathematica

Similarity:

For any 0 < ϵ < 1, p ≥ 1 and each function f L p [ 0 , 1 ] one can find a function g L [ 0 , 1 ) with mesx ∈ [0,1): g ≠ f < ϵ such that its greedy algorithm with respect to the Walsh system converges uniformly on [0,1) and the sequence | c k ( g ) | : k s p e c ( g ) is decreasing, where c k ( g ) is the sequence of Fourier coefficients of g with respect to the Walsh system.

Boundedness of Fourier integral operators on Fourier Lebesgue spaces and affine fibrations

Fabio Nicola (2010)

Studia Mathematica

Similarity:

We study Fourier integral operators of Hörmander’s type acting on the spaces L p ( d ) c o m p , 1 ≤ p ≤ ∞, of compactly supported distributions whose Fourier transform is in L p . We show that the sharp loss of derivatives for such an operator to be bounded on these spaces is related to the rank r of the Hessian of the phase Φ(x,η) with respect to the space variables x. Indeed, we show that operators of order m = -r|1/2-1/p| are bounded on L p ( d ) c o m p if the mapping x x Φ ( x , η ) is constant on the fibres, of codimension r,...

Convergence of greedy approximation II. The trigonometric system

S. V. Konyagin, V. N. Temlyakov (2003)

Studia Mathematica

Similarity:

We study the following nonlinear method of approximation by trigonometric polynomials. For a periodic function f we take as an approximant a trigonometric polynomial of the form G ( f ) : = k Λ f ̂ ( k ) e i ( k , x ) , where Λ d is a set of cardinality m containing the indices of the m largest (in absolute value) Fourier coefficients f̂(k) of the function f. Note that Gₘ(f) gives the best m-term approximant in the L₂-norm, and therefore, for each f ∈ L₂, ||f-Gₘ(f)||₂ → 0 as m → ∞. It is known from previous results that in...

The degree of approximation by Hausdorff means of a conjugate Fourier series

Sergiusz Kęska (2016)

Annales Universitatis Mariae Curie-Sklodowska, sectio A – Mathematica

Similarity:

The purpose of this paper is to analyze the degree of approximation of a function f ¯ that is a conjugate of a function f belonging to the Lipschitz class by Hausdorff means of a conjugate series of the Fourier series.