Displaying similar documents to “An approximation property with respect to an operator ideal”

An ideal characterization of when a subspace of certain Banach spaces has the metric compact approximation property

J. Cabello, E. Nieto (1998)

Studia Mathematica

Similarity:

C.-M. Cho and W. B. Johnson showed that if a subspace E of p , 1 < p < ∞, has the compact approximation property, then K(E) is an M-ideal in ℒ(E). We prove that for every r,s ∈ ]0,1] with r 2 + s 2 < 1 , the James space can be provided with an equivalent norm such that an arbitrary subspace E has the metric compact approximation property iff there is a norm one projection P on ℒ(E)* with Ker P = K(E)⊥ satisfying ∥⨍∥ ≥ r∥Pf∥ + s∥φ - Pf∥ ∀⨍ ∈ ℒ(E)*. A similar result is proved for subspaces of...

On the compact approximation property

Vegard Lima, Åsvald Lima, Olav Nygaard (2004)

Studia Mathematica

Similarity:

We show that a Banach space X has the compact approximation property if and only if for every Banach space Y and every weakly compact operator T: Y → X, the space = S ∘ T: S compact operator on X is an ideal in = span(,T) if and only if for every Banach space Y and every weakly compact operator T: Y → X, there is a net ( S γ ) of compact operators on X such that s u p γ | | S γ T | | | | T | | and S γ I X in the strong operator topology. Similar results for dual spaces are also proved.

Some duality results on bounded approximation properties of pairs

Eve Oja, Silja Treialt (2013)

Studia Mathematica

Similarity:

The main result is as follows. Let X be a Banach space and let Y be a closed subspace of X. Assume that the pair ( X * , Y ) has the λ-bounded approximation property. Then there exists a net ( S α ) of finite-rank operators on X such that S α ( Y ) Y and | | S α | | λ for all α, and ( S α ) and ( S * α ) converge pointwise to the identity operators on X and X*, respectively. This means that the pair (X,Y) has the λ-bounded duality approximation property.

Lebesgue type points in strong (C,α) approximation of Fourier series

Włodzimierz Łenski, Bogdan Roszak (2011)

Banach Center Publications

Similarity:

We present an estimation of the H k , k r q , α f and H λ , u ϕ , α f means as approximation versions of the Totik type generalization (see [5], [6]) of the result of G. H. Hardy, J. E. Littlewood. Some corollaries on the norm approximation are also given.

On subextension and approximation of plurisubharmonic functions with given boundary values

Hichame Amal (2014)

Annales Polonici Mathematici

Similarity:

Our aim in this article is the study of subextension and approximation of plurisubharmonic functions in χ ( Ω , H ) , the class of functions with finite χ-energy and given boundary values. We show that, under certain conditions, one can approximate any function in χ ( Ω , H ) by an increasing sequence of plurisubharmonic functions defined on strictly larger domains.

Lagrange approximation in Banach spaces

Lisa Nilsson, Damián Pinasco, Ignacio M. Zalduendo (2015)

Czechoslovak Mathematical Journal

Similarity:

Starting from Lagrange interpolation of the exponential function e z in the complex plane, and using an integral representation formula for holomorphic functions on Banach spaces, we obtain Lagrange interpolating polynomials for representable functions defined on a Banach space E . Given such a representable entire funtion f : E , in order to study the approximation problem and the uniform convergence of these polynomials to f on bounded sets of E , we present a sufficient growth condition on...

Compact operators whose adjoints factor through subspaces of l p

Deba P. Sinha, Anil K. Karn (2002)

Studia Mathematica

Similarity:

For p ≥ 1, a subset K of a Banach space X is said to be relatively p-compact if K n = 1 α x : α B a l l ( l p ' ) , where p’ = p/(p-1) and x l p s ( X ) . An operator T ∈ B(X,Y) is said to be p-compact if T(Ball(X)) is relatively p-compact in Y. Similarly, weak p-compactness may be defined by considering x l p w ( X ) . It is proved that T is (weakly) p-compact if and only if T* factors through a subspace of l p in a particular manner. The normed operator ideals ( K p , κ p ) of p-compact operators and ( W p , ω p ) of weakly p-compact operators, arising from these factorizations,...

Routh-type L 2 model reduction revisited

Wiesław Krajewski, Umberto Viaro (2018)

Kybernetika

Similarity:

A computationally simple method for generating reduced-order models that minimise the L 2 norm of the approximation error while preserving a number of second-order information indices as well as the steady-state value of the step response, is presented. The method exploits the energy-conservation property peculiar to the Routh reduction method and the interpolation property of the L 2 -optimal approximation. Two examples taken from the relevant literature show that the suggested techniques...

Duality of measures of non-𝒜-compactness

Juan Manuel Delgado, Cándido Piñeiro (2015)

Studia Mathematica

Similarity:

Let be a Banach operator ideal. Based on the notion of -compactness in a Banach space due to Carl and Stephani, we deal with the notion of measure of non–compactness of an operator. We consider a map χ (respectively, n ) acting on the operators of the surjective (respectively, injective) hull of such that χ ( T ) = 0 (respectively, n ( T ) = 0 ) if and only if the operator T is -compact (respectively, injectively -compact). Under certain conditions on the ideal , we prove an equivalence inequality involving...

Approximation properties for modified ( p , q ) -Bernstein-Durrmeyer operators

Mohammad Mursaleen, Ahmed A. H. Alabied (2018)

Mathematica Bohemica

Similarity:

We introduce modified ( p , q ) -Bernstein-Durrmeyer operators. We discuss approximation properties for these operators based on Korovkin type approximation theorem and compute the order of convergence using usual modulus of continuity. We also study the local approximation property of the sequence of positive linear operators D n , p , q * and compute the rate of convergence for the function f belonging to the class Lip M ( γ ) .