Displaying similar documents to “The joint essential numerical range, compact perturbations, and the Olsen problem”

Numerical solution of Black-Scholes option pricing with variable yield discrete dividend payment

Rafael Company, Lucas Jódar, Enrique Ponsoda (2008)

Banach Center Publications

Similarity:

This paper deals with the construction of numerical solution of the Black-Scholes (B-S) type equation modeling option pricing with variable yield discrete dividend payment at time t d . Firstly the shifted delta generalized function δ ( t - t d ) appearing in the B-S equation is approximated by an appropriate sequence of nice ordinary functions. Then a semidiscretization technique applied on the underlying asset is used to construct a numerical solution. The limit of this numerical solution is independent...

Numerical radius inequalities for Hilbert C * -modules

Sadaf Fakri Moghaddam, Alireza Kamel Mirmostafaee (2022)

Mathematica Bohemica

Similarity:

We present a new method for studying the numerical radius of bounded operators on Hilbert C * -modules. Our method enables us to obtain some new results and generalize some known theorems for bounded operators on Hilbert spaces to bounded adjointable operators on Hilbert C * -module spaces.

On the Bishop-Phelps-Bollobás theorem for operators and numerical radius

Sun Kwang Kim, Han Ju Lee, Miguel Martín (2016)

Studia Mathematica

Similarity:

We study the Bishop-Phelps-Bollobás property for numerical radius (for short, BPBp-nu) of operators on ℓ₁-sums and -sums of Banach spaces. More precisely, we introduce a property of Banach spaces, which we call strongly lush. We find that if X is strongly lush and X ⊕₁ Y has the weak BPBp-nu, then (X,Y) has the Bishop-Phelps-Bollobás property (BPBp). On the other hand, if Y is strongly lush and X Y has the weak BPBp-nu, then (X,Y) has the BPBp. Examples of strongly lush spaces are C(K)...

A numerical radius inequality and an estimate for the numerical radius of the Frobenius companion matrix

Fuad Kittaneh (2003)

Studia Mathematica

Similarity:

It is shown that if A is a bounded linear operator on a complex Hilbert space, then w ( A ) 1 / 2 ( | | A | | + | | A ² | | 1 / 2 ) , where w(A) and ||A|| are the numerical radius and the usual operator norm of A, respectively. An application of this inequality is given to obtain a new estimate for the numerical radius of the Frobenius companion matrix. Bounds for the zeros of polynomials are also given.

The -product approach for linear ODEs: A numerical study of the scalar case

Pozza, Stefano, Van Buggenhout, Niel

Similarity:

Solving systems of non-autonomous ordinary differential equations (ODE) is a crucial and often challenging problem. Recently a new approach was introduced based on a generalization of the Volterra composition. In this work, we explain the main ideas at the core of this approach in the simpler setting of a scalar ODE. Understanding the scalar case is fundamental since the method can be straightforwardly extended to the more challenging problem of systems of ODEs. Numerical examples illustrate...

The joint essential numerical range of operators: convexity and related results

Chi-Kwong Li, Yiu-Tung Poon (2009)

Studia Mathematica

Similarity:

Let W(A) and W e ( A ) be the joint numerical range and the joint essential numerical range of an m-tuple of self-adjoint operators A = (A₁, ..., Aₘ) acting on an infinite-dimensional Hilbert space. It is shown that W e ( A ) is always convex and admits many equivalent formulations. In particular, for any fixed i ∈ 1, ..., m, W e ( A ) can be obtained as the intersection of all sets of the form c l ( W ( A , . . . , A i + 1 , A i + F , A i + 1 , . . . , A ) ) , where F = F* has finite rank. Moreover, the closure cl(W(A)) of W(A) is always star-shaped with the elements in...

Instrumental weighted variables under heteroscedasticity. Part II – Numerical study

Jan Ámos Víšek (2017)

Kybernetika

Similarity:

Results of a numerical study of the behavior of the instrumental weighted variables estimator – in a competition with two other estimators – are presented. The study was performed under various frameworks (homoscedsticity/heteroscedasticity, several level and types of contamination of data, fulfilled/broken orthogonality condition). At the beginning the optimal values of eligible parameters of estimatros in question were empirically established. It was done under the various sizes of...

Product of operators and numerical range preserving maps

Chi-Kwong Li, Nung-Sing Sze (2006)

Studia Mathematica

Similarity:

Let V be the C*-algebra B(H) of bounded linear operators acting on the Hilbert space H, or the Jordan algebra S(H) of self-adjoint operators in B(H). For a fixed sequence (i₁, ..., iₘ) with i₁, ..., iₘ ∈ 1, ..., k, define a product of A , . . . , A k V by A * * A k = A i A i . This includes the usual product A * * A k = A A k and the Jordan triple product A*B = ABA as special cases. Denote the numerical range of A ∈ V by W(A) = (Ax,x): x ∈ H, (x,x) = 1. If there is a unitary operator U and a scalar μ satisfying μ m = 1 such that ϕ: V → V has...

Numerical comparison of unsteady compressible viscous flow in convergent channel

Pořízková, Petra, Kozel, Karel, Horáček, Jaromír

Similarity:

This study deals with a numerical solution of a 2D flows of a compressible viscous fluids in a convergent channel for low inlet airflow velocity. Three governing systems – Full system, Adiabatic system, Iso-energetic system b a s e d o n t h e N a v i e r - S t o k e s e q u a t i o n s f o r l a m i n a r f l o w a r e t e s t e d . T h e n u m e r i c a l s o l u t i o n i s r e a l i z e d b y f i n i t e v o l u m e m e t h o d a n d t h e p r e d i c t o r - c o r r e c t o r M a c C o r m a c k s c h e m e w i t h J a m e s o n a r t i f i c i a l v i s c o s i t y u s i n g a g r i d o f q u a d r i l a t e r a l c e l l s . T h e u n s t e a d y g r i d o f q u a d r i l a t e r a l c e l l s i s c o n s i d e r e d i n t h e f o r m o f c o n s e r v a t i o n l a w s u s i n g A r b i t r a r y L a g r a n g i a n - E u l e r i a n m e t h o d . T h e n u m e r i c a l r e s u l t s , a c q u i r e d f r o m a d e v e l o p e d p r o g r a m , a r e p r e s e n t e d f o r i n l e t v e l o c i t y u=4.12 ms-1 a n d R e y n o l d s n u m b e r R e = 4 103 .

Numerical index of vector-valued function spaces

Miguel Martín, Rafael Payá (2000)

Studia Mathematica

Similarity:

We show that the numerical index of a c 0 -, l 1 -, or l -sum of Banach spaces is the infimum of the numerical indices of the summands. Moreover, we prove that the spaces C(K,X) and L 1 ( μ , X ) (K any compact Hausdorff space, μ any positive measure) have the same numerical index as the Banach space X. We also observe that these spaces have the so-called Daugavet property whenever X has the Daugavet property.

Theoretical and numerical studies of the P N P M DG schemes in one space dimension

Abdulatif Badenjki, Gerald G. Warnecke (2019)

Applications of Mathematics

Similarity:

We give a proof of the existence of a solution of reconstruction operators used in the P N P M DG schemes in one space dimension. Some properties and error estimates of the projection and reconstruction operators are presented. Then, by applying the P N P M DG schemes to the linear advection equation, we study their stability obtaining maximal limits of the Courant numbers for several P N P M DG schemes mostly experimentally. A numerical study explains how the stencils used in the reconstruction affect...

The covariety of perfect numerical semigroups with fixed Frobenius number

María Ángeles Moreno-Frías, José Carlos Rosales (2024)

Czechoslovak Mathematical Journal

Similarity:

Let S be a numerical semigroup. We say that h S is an isolated gap of S if { h - 1 , h + 1 } S . A numerical semigroup without isolated gaps is called a perfect numerical semigroup. Denote by m ( S ) the multiplicity of a numerical semigroup S . A covariety is a nonempty family 𝒞 of numerical semigroups that fulfills the following conditions: there exists the minimum of 𝒞 , the intersection of two elements of 𝒞 is again an element of 𝒞 , and S { m ( S ) } 𝒞 for all S 𝒞 such that S min ( 𝒞 ) . We prove that the set 𝒫 ( F ) = { S : S is a perfect numerical semigroup...

On the norm-closure of the class of hypercyclic operators

Christoph Schmoeger (1997)

Annales Polonici Mathematici

Similarity:

Let T be a bounded linear operator acting on a complex, separable, infinite-dimensional Hilbert space and let f: D → ℂ be an analytic function defined on an open set D ⊆ ℂ which contains the spectrum of T. If T is the limit of hypercyclic operators and if f is nonconstant on every connected component of D, then f(T) is the limit of hypercyclic operators if and only if f ( σ W ( T ) ) z : | z | = 1 is connected, where σ W ( T ) denotes the Weyl spectrum of T.

Numerical analysis of a Stokes interface problem based on formulation using the characteristic function

Yoshiki Sugitani (2017)

Applications of Mathematics

Similarity:

Numerical analysis of a model Stokes interface problem with the homogeneous Dirichlet boundary condition is considered. The interface condition is interpreted as an additional singular force field to the Stokes equations using the characteristic function. The finite element method is applied after introducing a regularization of the singular source term. Consequently, the error is divided into the regularization and discretization parts which are studied separately. As a result, error...

Numerical index with respect to an operator

Mohammad Ali Ardalani (2014)

Studia Mathematica

Similarity:

We introduce new concepts of numerical range and numerical radius of one operator with respect to another one, which generalize in a natural way the known concepts of numerical range and numerical radius. We study basic properties of these new concepts and present some examples.

Multiple summing operators on l p spaces

Dumitru Popa (2014)

Studia Mathematica

Similarity:

We use the Maurey-Rosenthal factorization theorem to obtain a new characterization of multiple 2-summing operators on a product of l p spaces. This characterization is used to show that multiple s-summing operators on a product of l p spaces with values in a Hilbert space are characterized by the boundedness of a natural multilinear functional (1 ≤ s ≤ 2). We use these results to show that there exist many natural multiple s-summing operators T : l 4 / 3 × l 4 / 3 l such that none of the associated linear operators...

The Bishop-Phelps-Bollobás property for numerical radius in ℓ₁(ℂ)

Antonio J. Guirao, Olena Kozhushkina (2013)

Studia Mathematica

Similarity:

We show that the set of bounded linear operators from X to X admits a Bishop-Phelps-Bollobás type theorem for numerical radius whenever X is ℓ₁(ℂ) or c₀(ℂ). As an essential tool we provide two constructive versions of the classical Bishop-Phelps-Bollobás theorem for ℓ₁(ℂ).

Regularity of domains of parameterized families of closed linear operators

Teresa Winiarska, Tadeusz Winiarski (2003)

Annales Polonici Mathematici

Similarity:

The purpose of this paper is to provide a method of reduction of some problems concerning families A t = ( A ( t ) ) t of linear operators with domains ( t ) t to a problem in which all the operators have the same domain . To do it we propose to construct a family ( Ψ t ) t of automorphisms of a given Banach space X having two properties: (i) the mapping t Ψ t is sufficiently regular and (ii) Ψ t ( ) = t for t ∈ . Three effective constructions are presented: for elliptic operators of second order with the Robin boundary condition...

A unified Lorenz-type approach to divergence and dependence

Teresa Kowalczyk

Similarity:

AbstractThe paper deals with function-valued and numerical measures of absolute and directed divergence of one probability measure from another. In case of absolute divergence, some new results are added to the known ones to form a unified structure. In case of directed divergence, new concepts are introduced and investigated. It is shown that the notions of absolute and directed divergences complement each other and provide a good insight into the extent and the type of discrepancy...