Displaying similar documents to “Muckenhoupt-Wheeden conjectures in higher dimensions”

Two weighted inequalities for convolution maximal operators.

Ana Lucía Bernardis, Francisco Javier Martín-Reyes (2002)

Publicacions Matemàtiques

Similarity:

Let φ: R → [0,∞) an integrable function such that φχ = 0 and φ is decreasing in (0,∞). Let τf(x) = f(x-h), with h ∈ R {0} and f(x) = 1/R f(x/R), with R > 0. In this paper we characterize the pair of weights (u, v) such that the operators Mf(x) = sup|f| * [τφ](x) are of weak type (p, p) with respect to (u, v), 1 < p < ∞.

On the two-weight problem for singular integral operators

David Cruz-Uribe, Carlos Pérez (2002)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

Similarity:

We give A p type conditions which are sufficient for two-weight, strong ( p , p ) inequalities for Calderón-Zygmund operators, commutators, and the Littlewood-Paley square function g λ * . Our results extend earlier work on weak ( p , p ) inequalities in [13].

Norm inequalities for off-centered maximal operators.

Richard L. Wheeden (1993)

Publicacions Matemàtiques

Similarity:

Sufficient conditions are derived in order that there exist strong-type weighted norm inequalities for some off-centered maximal functions. The maximal functions are of Hardy-Littlewood and fractional types taken over starlike sets in R. The sufficient conditions are close to necessary and extend some previously known weak-type results.

A remark on Fefferman-Stein's inequalities.

Y. Rakotondratsimba (1998)

Collectanea Mathematica

Similarity:

It is proved that, for some reverse doubling weight functions, the related operator which appears in the Fefferman Stein's inequality can be taken smaller than those operators for which such an inequality is known to be true.

On boundedness properties of certain maximal operators

M. Menárguez (1995)

Colloquium Mathematicae

Similarity:

It is known that the weak type (1,1) for the Hardy-Littlewood maximal operator can be obtained from the weak type (1,1) over Dirac deltas. This theorem is due to M. de Guzmán. In this paper, we develop a technique that allows us to prove such a theorem for operators and measure spaces in which Guzmán's technique cannot be used.

The factorization of the weighted Hardy space in terms of multilinear Calderón-Zygmund operators

Suixin He, Shuangping Tao (2023)

Czechoslovak Mathematical Journal

Similarity:

We give a constructive proof of the factorization theorem for the weighted Hardy space in terms of multilinear Calderón-Zygmund operators. The result is also new even in the linear setting. As an application, we obtain the characterization of weighted BMO space via the weighted boundedness of commutators of the multilinear Calderón-Zygmund operators.

Multilinear Calderón-Zygmund operators on weighted Hardy spaces

Wenjuan Li, Qingying Xue, Kôzô Yabuta (2010)

Studia Mathematica

Similarity:

Grafakos-Kalton [Collect. Math. 52 (2001)] discussed the boundedness of multilinear Calderón-Zygmund operators on the product of Hardy spaces. Then Lerner et al. [Adv. Math. 220 (2009)] defined A p weights and built a theory of weights adapted to multilinear Calderón-Zygmund operators. In this paper, we combine the above results and obtain some estimates for multilinear Calderón-Zygmund operators on weighted Hardy spaces and also obtain a weighted multilinear version of an inequality for...